
Professor of Computational and Molecular Biophysics
Rosana is the Professor of Computational and Molecular Biophysics at the Departments of Chemistry and Genetics, and a Winton Advanced Research Fellow in the Department of Physics. Her group develops multiscale modelling approaches to investigate the physicochemical driving forces that govern DNA packaging inside cells, membraneless compartamentalization via liquid-liquid phase behaviour of biomolecules (proteins, nucleic acids, and chromatin), chromatin structure, epigenetic phenomena, and the relationship between the structure of the genome and gene expression regulation.
Professor Collepardo discusses her research
Publications
Surfactants or scaffolds? RNAs of different lengths exhibit heterogeneous distributions and play diverse roles in RNA-protein condensates
(2022)
(doi: 10.1101/2022.11.09.515827)
Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it
– Nat Commun
(2022)
13,
5717
(doi: 10.1038/s41467-022-32874-0)
Aging can transform single-component protein condensates into multiphase architectures.
– Proceedings of the National Academy of Sciences of the United States of America
(2022)
119,
e2119800119
(doi: 10.1073/pnas.2119800119)
Designing multiphase biomolecular condensates by coevolution of protein mixtures
(2022)
(doi: 10.1101/2022.04.22.489187)
Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it
(2022)
2022.03.30.486367
(doi: 10.1101/2022.03.30.486367)
Multiscale modelling of chromatin organisation: Resolving nucleosomes at near-atomistic resolution inside genes.
– Curr Opin Cell Biol
(2022)
75,
102067
(doi: 10.1016/j.ceb.2022.02.001)
Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates.
– Sci Rep
(2022)
12,
4390
(doi: 10.1038/s41598-022-08130-2)
RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins.
– PLoS Comput Biol
(2022)
18,
e1009810
(doi: 10.1371/journal.pcbi.1009810)
Comparison of experimental phase diagrams and residue-level coarse-grained simulations of intrinsically disordered proteins
– Biophysical Journal
(2022)
121,
471a
(doi: 10.1016/j.bpj.2021.11.408)
Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy
– Biophysical Journal
(2022)
121,
307a
(doi: 10.1016/j.bpj.2021.11.1214)
- <
- 4 of 9