skip to content

Yusuf Hamied Department of Chemistry

Portrait of tpjk2

Professor of Physical Chemistry and Biophysics

Our research

We study the physical and chemical aspects of the behaviour of biopolymers and other soft systems. Much of our work has been focused on the physical aspects underlying the self-assembly of protein molecules. Self-organisation is the driving force generating complex matter in nature, and the process by which the machinery providing functionality in living systems is assembled. The goal of our research is to understand the physical and chemical factors which control the structures and dynamics of biomolecular assemblies, and the connections between the nanoscale characteristics of the component molecules and the physical properties of large-scale assemblies and their behaviour on a mesoscopic to macroscopic scale. The techniques used in our laboratory include biosensors, optical lithography, microfluidic devices and scanning probe microscopy and spectroscopy. We work both with natural and synthetic polymers and our interests range from fundamental chemical physics to technological applications in material science and molecular medicine.

Watch Professor Knowles discuss his research

Take a tour of the Sir Rodney Sweetnam laboratory


Uncovering the universality of self-replication in protein aggregation and its link to disease
G Meisl, CK Xu, JD Taylor, TCT Michaels, A Levin, D Otzen, D Klenerman, S Matthews, S Linse, M Andreasen, TPJ Knowles
– Science Advances
A conformational switch controlling the toxicity of the prion protein.
K Frontzek, M Bardelli, A Senatore, A Henzi, RR Reimann, S Bedir, M Marino, R Hussain, S Jurt, G Meisl, M Pedotti, F Mazzola, G Siligardi, O Zerbe, M Losa, T Knowles, A Lakkaraju, C Zhu, P Schwarz, S Hornemann, MG Holt, L Simonelli, L Varani, A Aguzzi
– Nature Structural & Molecular Biology
DNA–Liposome Hybrid Carriers for Triggered Cargo Release
KN Baumann, T Schröder, PS Ciryam, D Morzy, P Tinnefeld, TPJ Knowles, S Hernández-Ainsa
– ACS Applied Bio Materials
Structure specific amyloid precipitation in biofluids
M Rodrigues, P Bhattacharjee, A Brinkmalm, DT Do, CM Pearson, S De, A Ponjavic, JA Varela, K Kulenkampff, I Baudrexel, D Emin, FS Ruggeri, JE Lee, AR Carr, TPJ Knowles, H Zetterberg, TN Snaddon, S Gandhi, SF Lee, D Klenerman
– Nat Chem
Recent Advances in Microgels: From Biomolecules to Functionality.
Y Xu, H Zhu, A Denduluri, Y Ou, NA Erkamp, R Qi, Y Shen, TPJ Knowles
– Small
Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions.
M Kar, F Dar, TJ Welsh, LT Vogel, R Kühnemuth, A Majumdar, G Krainer, TM Franzmann, S Alberti, CAM Seidel, TPJ Knowles, AA Hyman, RV Pappu
– Proceedings of the National Academy of Sciences
Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers.
TCT Michaels, AJ Dear, SIA Cohen, M Vendruscolo, TPJ Knowles
– The Journal of Chemical Physics
Analytical solution to the Flory-Huggins model
D Qian, T Michaels, T Knowles
– Journal of Physical Chemistry Letters
Micromechanics of soft materials using microfluidics
Y Xu, H Zhu, Y Shen, APM Guttenplan, KL Saar, Y Lu, D Vigolo, LS Itzhaki, TPJ Knowles
– MRS Bulletin
Microfluidic Antibody Affinity Profiling Reveals the Role of Memory Reactivation and Cross-Reactivity in the Defense Against SARS-CoV-2
V Denninger, CK Xu, G Meisl, AS Morgunov, S Fiedler, A Ilsley, M Emmenegger, AY Malik, MA Piziorska, MM Schneider, SRA Devenish, V Kosmoliaptsis, A Aguzzi, H Fiegler, TPJ Knowles
– ACS Infect Dis
  • 1 of 50
  • >

Research Interest Groups

Telephone number

01223 336344

Email address