skip to content

Yusuf Hamied Department of Chemistry

 

Research

Dr Pietro Sormanni is a Royal Society University Research Fellow. His research focuses on the development of innovative data-driven technologies of rational antibody design, to obtain antibodies against targets that have been challenging to access using conventional approaches, and to improve or predict biophysical properties crucial for the successful development of antibody therapeutics. In his work he has established numerous collaborations and industrial partnerships, whose outcomes are beginning to demonstrate that computational approaches can be applied alongside established procedures to streamline antibody development, and to offer time- and cost-effective novel alternatives.  

Antibodies are key tools to address questions in biomedical research, are widely employed in diagnostics, and are increasingly used as therapeutics to treat many diseases, including cancer and neurodegeneration. Existing methods of antibody discovery and optimisation rely on the laboratory screening of large numbers of variants produced by library construction or by the immune system, which can be time consuming and costly, and sometimes result in antibodies exhibiting sub-optimal properties. Conversely, computational design could drastically reduce time and costs of antibody discovery, and in principle allow for a highly controlled parallel screening of multiple biophysical properties. Moreover, rational design inherently allows targeting specific regions on the target protein (epitopes), which can be particularly daunting using available techniques but is very important for many therapeutic applications.

Background

Prior to taking up this post, Pietro held a postdoctoral Borysiewicz Biomedical Sciences  Fellowship from the University of Cambridge, obtained a PhD in Chemistry from the University of Cambridge, and an MSc in Theoretical Physics from the University of Milan.

Join our group

We are always looking for talented and enthusiastic individuals to join the team. If you are interested, please get in touch to discuss potential opportunities.

Selected publications

Dr Sormanni discusses his research

Publications

Pairs of amino acids at the P- and A-sites of the ribosome predictably and causally modulate translation-elongation rates: Amino acid pairs module translation-elongation rates
N Ahmed, UA Friedrich, P Sormanni, P Ciryam, NS Altman, B Bukau, G Kramer, EP O'Brien
– Journal of molecular biology
(2020)
432,
166696
Systematic Activity Maturation of a Single-Domain Antibody with Non-canonical Amino Acids through Chemical Mutagenesis.
PR Lindstedt, FA Aprile, P Sormanni, R Rakoto, CM Dobson, GJL Bernardes, M Vendruscolo
– Cell chemical biology
(2020)
A rationally designed bicyclic peptide remodels Aβ42 aggregation in vitro and reduces its toxicity in a worm model of Alzheimer's disease.
T Ikenoue, FA Aprile, P Sormanni, FS Ruggeri, M Perni, GT Heller, CP Haas, C Middel, R Limbocker, B Mannini, TCT Michaels, TPJ Knowles, CM Dobson, M Vendruscolo
– Scientific reports
(2020)
10,
15280
Rationally designed antibodies as research tools to study the structure–toxicity relationship of amyloid-β oligomers
R Limbocker, B Mannini, R Cataldi, S Chhangur, AK Wright, RP Kreiser, JA Albright, S Chia, J Habchi, P Sormanni, JR Kumita, FS Ruggeri, CM Dobson, F Chiti, FA Aprile, M Vendruscolo
– Int J Mol Sci
(2020)
21,
1
Rational design of a conformation-specific antibody for the quantification of A beta oligomers
FA Aprile, P Sormanni, M Podpolny, S Chhangur, L-M Needham, FS Ruggeri, M Perni, R Limbocker, GT Heller, T Sneideris, T Scheidt, B Mannini, J Habchi, SF Lee, PC Salinas, TPJ Knowles, CM Dobson, M Vendruscolo
– Proc Natl Acad Sci U S A
(2020)
117,
13509
Inherent Biophysical Properties Modulate the Toxicity of Soluble Amyloidogenic Light Chains.
M Maritan, M Romeo, L Oberti, P Sormanni, M Tasaki, R Russo, A Ambrosetti, P Motta, P Rognoni, G Mazzini, A Barbiroli, G Palladini, M Vendruscolo, L Diomede, M Bolognesi, G Merlini, F Lavatelli, S Ricagno
– J Mol Biol
(2020)
432,
845
Proteome-wide observation of the phenomenon of life on the edge of solubility.
G Vecchi, P Sormanni, B Mannini, A Vandelli, GG Tartaglia, CM Dobson, FU Hartl, M Vendruscolo
– Proceedings of the National Academy of Sciences
(2019)
117,
1015
Supersaturated proteins are enriched at synapses and underlie cell and tissue vulnerability in Alzheimer's disease
R Freer, P Sormanni, P Ciryam, B Rammner, SO Rizzoli, CM Dobson, M Vendruscolo
– Heliyon
(2019)
5,
e02589
Biochemical and biophysical comparison of human and mouse beta‐2 microglobulin reveals the molecular determinants of low amyloid propensity
A Achour, L Broggini, X Han, R Sun, C Santambrogio, J Buratto, C Visentin, A Barbiroli, CMG De Luca, P Sormanni, F Moda, A De Simone, T Sandalova, R Grandori, C Camilloni, S Ricagno
– The FEBS journal
(2019)
287,
546
A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data.
AK Sharma, P Sormanni, N Ahmed, P Ciryam, UA Friedrich, G Kramer, EP O'Brien
– PLoS computational biology
(2019)
15,
e1007070
  • 1 of 5
  • >

Telephone number

01223 761480

Email address

ps589@cam.ac.uk

College

Clare Hall