skip to content
 

Dr Silvia Vignolini

Portrait of sv319

Photonic structures in Nature and Bio-mimetic Materials

Research Interests

Photonic structures in nature

Colour in nature is everywhere: animals and plants develop structures on sub-micrometer scale to manipulate light and to obtain brilliant and iridescent colours. This kind of colouration, named structural since it is not obtained using pigmentation, results from various mechanisms, including multilayered materials, crystalline inclusions and surface diffraction gratings. Pollia condensata fruits are one of the most striking examples of  strong iridescent colouration in plants. The colour is caused by Bragg-reflection of helicoidally stacked cellulose microfibrils, which form multilayers in the cell walls of the epicarp. The bright blue colour of this fruit is more intense than that of many previously described biological materials. Uniquely in nature, the reflected colour differs from cell to cell, as the layer thicknesses in the multilayer stack vary, giving the fruit a striking pixelated or ’pointillist’ appearance.

PNAS 109, 15712–15715, (2012)
 

Another striking example is the white of the Cyphochilus beetle which is native to South-East Asia, is whiter than paper, thanks to ultra-thin scales which cover its body. A new investigation of the optical properties of these scales has shown that they are able to scatter light more efficiently than any other biological tissue known, which is how they are able to achieve such a bright whiteness.

Scientific Reports 4, 6075 doi:10.1038/srep06075 (2014)

Funding

  1. BBSRC David Phillips fellowship
  2. Next Generation fellowship
  3. Isaac Newton Trust

Selected Publications

[1] Pointillist structural colour in Pollia fruit

S. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, U. Steiner; PNAS 109, 15712–15715, (2012). 

[2] Controlled bio-inspired self-assembly of cellulose-based chiral reflectors 

A. G. Dumanli, G. Kamita, J. Landman, H. van der Kooij, B. J. Glover, J. J. Baumberg, U Steiner, S. Vignolini;  Adv. Opt. Mat. DOI: 10.1002/adom.201400112  (2014)
 

[3]Bright-White Beetle scales Optimise Multiple Scattering of Light

M. Burresi, L. Cortese, L. Pattelli, M. Kolle, P.Vukusic, D. Wiersma, U. Steiner, and S.Vignolini; Scientific Reports 4, 6075 doi:10.1038/srep06075 (2014)

 

Publications

New horizons for cellulose nanotechnology.
SJ Eichhorn, SS Rahatekar, S Vignolini, AH Windle
– Philos Trans A Math Phys Eng Sci
(2018)
376,
ARTN 20170200
The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance.
RM Parker, G Guidetti, CA Williams, T Zhao, A Narkevicius, S Vignolini, B Frka-Petesic
– Adv Mater
(2017)
Disorder in convergent floral nanostructures enhances signalling to bees.
E Moyroud, T Wenzel, R Middleton, PJ Rudall, H Banks, A Reed, G Mellers, P Killoran, MM Westwood, U Steiner, S Vignolini, BJ Glover
– Nature
(2017)
550,
469
Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets
B Frka-Petesic, G Guidetti, G Kamita, S Vignolini
– Adv Mater
(2017)
29,
1701469
Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces
RH Siddique, J Mertens, H Hölscher, S Vignolini
– Light: Science and Applications
(2017)
6,
e17015
Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales.
BD Wilts, X Sheng, M Holler, A Diaz, M Guizar-Sicairos, J Raabe, R Hoppe, S-H Liu, R Langford, OD Onelli, D Chen, S Torquato, U Steiner, CG Schroer, S Vignolini, A Sepe
– Adv Mater
(2017)
1702057
Development of structural colour in leaf beetles
OD Onelli, TVD Kamp, JN Skepper, J Powell, TDS Rolo, T Baumbach, S Vignolini
– Scientific reports
(2017)
7,
1373
Invited Article: Chiral optics of helicoidal cellulose nanocrystal films
BD Wilts, AG Dumanli, R Middleton, P Vukusic, S Vignolini
– APL Photonics
(2017)
2,
040801
Structural Color in Marine Algae
CJ Chandler, BD Wilts, J Brodie, S Vignolini
– Advanced Optical Materials
(2017)
5,
1600646
Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering.
S Caixeiro, M Peruzzo, OD Onelli, S Vignolini, R Sapienza
– ACS Appl Mater Interfaces
(2017)
9,
7885
  •  
  • 1 of 9
  • >

Research Interest Groups

Telephone number

01223 761490 (shared)

Email address

sv319@cam.ac.uk