skip to content

Dr Andrew Wheatley

Our research interests focus on understanding the structure, synthesis and reactivity of mixed-metal organometallic compounds and nanocatalysts.


Organometallics for synthesis

We are interested in the activities of molecular organometallic reagents and have used homo- and heterometallic reagents including Li-Al and Li-Zn systems to fabricate hydridic clusters and to function as chemoselective bases. We work on this with teams in Tokyo, Rennes and Bristol. Recent major advances include:

1) the first demonstration that directed benzylic lithiation can be used to generate tertiary carbanions (below right) and,

2) the combination of CuCN with organolithium reagents to give bimetallic bases such as (TMP)2Cu(CN)Li2.THF (TMP = 2,2,6,6-tetramethylpiperidide; below left) that have applications in directed cupration and C–C bond formation.


For the first tertiary carbanion syntheses by directed metalation and a comparison of anion structures in the solid state and in solution see Chem. Eur. J., 2011, 17, 8078 and 2012, 18, 11036.

See Angew. Chem. Int. Ed., 2012, 51, 12081 and Dalton Trans., 2016, 45, 6094 for recent advances in lithium amidocuprate structural and mechanistic chemistry and Chem. Eur. J., 2011, 17, 13284 for the applications of lithium cuprates in the elaboration of halopyridines.

Recently we have established the existence of adducts that may help to explain how cuprates of the type (amide)2Cu(Cl)Li2.L (below left; amide = TMP, L = Et2O) can exclude LiX to give highly active (amide)2CuLi.L. Steric effects associated with the amide ligand are thought to be crucial to controlling structure and are suggested if DMP (= cis-2,6-dimethylpiperidide) is used in place of TMP (below right).

See Chem. Eur. J., 2014, 20, 3908 for lithium amidocuprate adducts in directed aromatic cupration and for a recent invited review see Dalton Trans., 2014, 43, 14181.


Heterogeneous nanocatalysis

The ability to access stable and compositionally and dimensionally controllable metallic nanoparticles promises applications in catalysis. We prepare metal-based nanoparticles and use them to achieve controllably functional hybrid materials by encapsulation e.g. in mesostructured films. Recently, we have worked with members of Nagoya University to fabricate chitin-supported Ru-based catalysts active in the selective hydrogenation of arenes to cyclohexanes in water (Catal. Sci. Technol., 2016, 6, 5801) and have also moved into the field of photocatalysis, using semiconductor-based nanocomposites in the detoxification of water (Nanoscale, 2016, 8, 2727).

In other work, we have collaborated with researchers at the Technical University of Eindhoven applications of the resulting microreactors have been developed in the areas of selective hydrogenation, nanotube growth, and fine chemicals synthesis. See Lab Chip, 2009, 9, 503 for capillary microreactors wall-coated with mesoporous catalyst supports. For the immobilization of Cu catalysts (see below) and microfluidic Ullmann SNAr-type C-O coupling reactions see Chem. Eur. J., 2012, 18, 1800.



We are also interested in fundamental aspects of nanoparticle synthesis and structure. Recently, we have successfully fabricated oxidatively stable Cu-based nanocatalysts as evidenced by XRD and XPS (below). By introducing Zn we have also achieved CuZn nanoparticles with differing intermetallic ratios and predicted upper d-band energies for Cu. Cu-based catalysts were successfully deployed in multicomponent 1,3-dipolar cycloaddition reactions, yielding 1,2,3-triazoles using unprecedentedly low catalyst loadings and under facile conditions.


See Nanoscale, 2013, 5, 342 for the development of new routes towards Cu-based nanosystems and the application of Cu-based catalysts to triazole formation. Our interest in Cu-based nanoparticles, including how they progressively oxidize, has been reflected in work on the passivation of metal nanoparticles towards degenerative processes.  As part of a new study into the preparation of magnetic nanoparticles for applications in catalysis we have recently fully characterized monodisperse Co seeds encapsulated by Fe3O4 and established the presence of a sub-surface carbon layer:

The presence of this layer may have implications for core stability (the Co has been shown to be oxidatively stable for up to a year and counting) and the ability to favour the synthesis of core-shell heterostructures. This is the subject of ongoing work that seeks to establish the generality of this encapsulation procedure.

See Nanoscale, 2013, 5, 5765 for the synthesis and detailed characterization of Co-Fe3O4 nanoparticles, including using EFTEM and EELS point scan data (below) that proves the existence of intraparticle carbon. For the extension of detailed characterization of multimetallic core-shell architectures to the Fe3O4-encapsulation of more complex seeds see Nano Lett., 2015, 15, 2716 and Part. Part. Syst. Charact., 2016,


Sol–Gel Synthesis of Robust Metal–Organic Frameworks for Nanoparticle Encapsulation
JP Mehta, T Tian, Z Zeng, G Divitini, BM Connolly, PA Midgley, JC Tan, D Fairen-Jimenez, AEH Wheatley
– Advanced Functional Materials
ARTN 1705588
Harnessing Surface-Functionalized Metal-Organic Frameworks for Selective Tumor Cell Capture
X Qi, Z Chang, D Zhang, KJ Binder, S Shen, YYS Huang, Y Bai, AEH Wheatley, H Liu
– Chemistry of Materials
Targeting low-cost type-II heterostructures: Synthesis, structure and photoreactivity
A Kar, S Sain, D Rossouw, BR Knappett, SK Pradhan, GA Botton, AEH Wheatley
– Journal of Alloys and Compounds
Metal exchange in lithiocuprates: implications for our understanding of structure and reactivity.
AJ Peel, R Ackroyd, AEH Wheatley
– Chem. Sci.
Reactions of Trimethylaluminium: Modelling the Chemical Degradation of Synthetic Lubricants.
J Slaughter, AJ Peel, AEH Wheatley
– Chemistry
Extending motifs in lithiocuprate chemistry: Unexpected structural diversity in thiocyanate complexes
AJ Peel, M Hedidi, G Bentabed-Ababsa, T Roisnel, F Mongin, AEH Wheatley
– Dalton transactions (Cambridge, England : 2003)
Facile Synthesis of SnO₂-PbS Nanocomposites with Controlled Structure for Visible Light Photocatalysis
A Kar, S Sain, D Rossouw, BR Knappett, SK Pradhan, AEH Wheatley
– Nanoscale
Selective hydrogenation of arenes to cyclohexanes in water catalyzed by chitin-supported ruthenium nanoparticles
Y Morioka, A Matsuoka, K Binder, BR Knappett, AEH Wheatley, H Naka
– Catalysis Science and Technology
Alkali/coinage metals - Organolithium, organocuprate chemistry
AJ Peel, AEH Wheatley
– Organometallic Chemistry
A New Method for Determining the Composition of Core-Shell Nanoparticles via Dual-EDX+EELS Spectrum Imaging
D Rossouw, BR Knappett, AEH Wheatley, PA Midgley
– Particle and Particle Systems Characterization
  • 1 of 16
  • >

Research Interest Groups

Telephone number

01223 763966

Email address