skip to content

Dr Tuomas Knowles

Portrait of tpjk2

We study the physical and chemical aspects of the behaviour of biopolymers and other soft systems. Much of our work has been focused on the physical aspects underlying the self-assembly of protein molecules. Self-organisation is the driving force generating complex matter in nature, and the process by which the machinery providing functionality in living systems is assembled. The goal of our research is to understand the physical and chemical factors which control the structures and dynamics of biomolecular assemblies, and the connections between the nanoscale characteristics of the component molecules and the physical properties of large-scale assemblies and their behaviour on a mesoscopic to macroscopic scale. The techniques used in our laboratory include biosensors, optical lithography, microfluidic devices and scanning probe microscopy and spectroscopy. We work both with natural and synthetic polymers and our interests range from fundamental chemical physics to technological applications in material science and molecular medicine.

Selected publications

An analytical solution to the kinetics of breakable filament assembly, Science, 326, 1533 (2009)

Role of intermolecular forces in defining material properties of protein nanofibrils, Science 318, 1900 (2007)


On the lag phase in amyloid fibril formation
P Arosio, TP Knowles, S Linse – Physical chemistry chemical physics : PCCP (2015) 17, 7606
A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers
SI Cohen, P Arosio, J Presto, FR Kurudenkandy, H Biverstål, L Dolfe, C Dunning, X Yang, B Frohm, M Vendruscolo, J Johansson, CM Dobson, A Fisahn, TP Knowles, S Linse – Nature Structural & Molecular Biology (2015) 22, 207
Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation.
C Galvagnion, AK Buell, G Meisl, TC Michaels, M Vendruscolo, TP Knowles, CM Dobson – Nature Chemical Biology (2015) 11, 229
Kinetic theory of protein filament growth: Self-consistent methods and perturbative techniques
TCT Michaels, TPJ Knowles – International Journal of Modern Physics B (2015) 29, 1530002
Protein Microgels from Amyloid Fibril Networks
U Shimanovich, I Efimov, TO Mason, P Flagmeier, AK Buell, A Gedanken, S Linse, KS Åkerfeldt, CM Dobson, DA Weitz, TP Knowles – ACS Nano (2015) 9, 43
Crucial role of nonspecific interactions in amyloid nucleation
A Šarić, YC Chebaro, TP Knowles, D Frenkel – Proceedings of the National Academy of Sciences of the United States of America (2014) 111, 17869
Tetracycline Nanoparticles as Antibacterial and Gene-Silencing Agents.
U Shimanovich, A Lipovsky, D Eliaz, S Zigdon, TP Knowles, Y Nitzan, S Michaeli, A Gedanken – Adv Healthc Mater (2014) n/a
Dry-mass sensing for microfluidics
T Mueller, DA White, TPJ Knowles – Applied Physics Letters (2014) 105, 214101
Multiphase Protein Microgels.
U Shimanovich, Y Song, J Brujic, HC Shum, TP Knowles – Macromolecular bioscience (2014) n/a
Interaction of the molecular chaperone DNAJB6 with growing amyloid-beta 42 (Aβ42) aggregates leads to sub-stoichiometric inhibition of amyloid formation.
C Månsson, P Arosio, R Hussein, HH Kampinga, RM Hashem, WC Boelens, CM Dobson, TP Knowles, S Linse, C Emanuelsson – J Biol Chem (2014) 289, 31066
  • 1 of 11
  • >

Research Group

Research Interest Groups

Telephone number

01223 763845 (shared)
01223 336344

Email address