Groups: Clarke (J.) group website
Telephone: 01223 336426
E-mail: jc162@cam.ac.uk
.
Biophysical and structural studies of protein folding
The physics and chemistry of weak molecular interactions underpin the whole of biology. These
determine the structure and stability of biological macromolecules and the strength and lifetime of
interactions of these macromolecules with other cellular components. Understanding how a
protein folds into a specific structure (which is only marginally stable) on a biologically relevant
timescale, is still a significant challenge. Fundamental biophysical studies of the folding of
proteins and of protein-protein interactions are key to understanding cellular function.
We have two fundamental research areas:
(1) How do proteins fold at the atomistic level and how is misfolding avoided?
(2) How do changes in sequence, as the result of evolution, or brought about by mutation affect
the biophysical properties of proteins?
We study families of proteins using a multidisciplinary approach, to address specific questions:

Selected Publications
Borgia, M. B., Nickson, A.A., Clarke J. & Hounslow, M.J. (2013) A mechanistic model for amorphous protein aggregation of immunoglobulin-like domains. J. Am. Chem. Soc., in press DOI: 10.1021/ja308852b
Rogers, J.M. Steward, A. & Clarke, J. Folding and binding of an intrinsically disordered protein: fast, but not ‘diffusion-limited’. J. Am. Chem. Soc., 135, 1415−1422 DOI: 10.1021/ja309527h
Nickson, A. A., Wensley, B.G. & Clarke, J. Take home lessons from studies of related proteins. Curr. Opin. Struct. Biol. 23, 66-74.
Wensley, B.G., Kwa, L.G., Shammas, S.L., Rogers, J.M., Browning, S., Yang, Z. & Clarke, J. (2012) Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains. Proc. Natl. Acad. Sci. USA 109, 17795-17799.
Borgia, M.B., Borgia, A., Best, R.B., Steward, A., Nettels, D., Wunderlich, B., Schuler, B. & Clarke, J. (2011) Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474, 662-665.
Wensley, B.G., Batey, S., Bone, F.A.C., Chan, Z.M., Tumelty, N.R., Steward, A., Kwa, L.G., Borgia, A. & Clarke, J. (2010) Experimental evidence for a frustrated energy landscape in a 3-helix bundle protein family. Nature 463, 685-689.