Professor of Physical Chemistry and Biophysics

1920 Professor of Physical Chemistry

Our research

We study the physical and chemical aspects of the behaviour of biopolymers and other soft systems. Much of our work has been focused on the physical aspects underlying the self-assembly of protein molecules. Self-organisation is the driving force generating complex matter in nature, and the process by which the machinery providing functionality in living systems is assembled. The goal of our research is to understand the physical and chemical factors which control the structures and dynamics of biomolecular assemblies, and the connections between the nanoscale characteristics of the component molecules and the physical properties of large-scale assemblies and their behaviour on a mesoscopic to macroscopic scale. The techniques used in our laboratory include biosensors, optical lithography, microfluidic devices and scanning probe microscopy and spectroscopy. We work both with natural and synthetic polymers and our interests range from fundamental chemical physics to technological applications in material science and molecular medicine.

Watch Professor Knowles discuss his research

Take a tour of the Sir Rodney Sweetnam laboratory

Publications

Three-dimensional domain swapping and supramolecular protein assembly: insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase
A Pica, A Merlino, AK Buell, TPJ Knowles, E Pizzo, G D'Alessio, F Sica, L Mazzarella
Acta Crystallogr D Biol Crystallogr
(2013)
69
Single-Molecule Measurements of Transient Biomolecular Complexes through Microfluidic Dilution
MH Horrocks, L Rajah, P Jönsson, M Kjaergaard, M Vendruscolo, TPJ Knowles, D Klenerman
Anal Chem
(2013)
85
Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism.
SIA Cohen, S Linse, LM Luheshi, E Hellstrand, DA White, L Rajah, DE Otzen, M Vendruscolo, CM Dobson, TPJ Knowles
Proceedings of the National Academy of Sciences
(2013)
110
Integration and characterization of solid wall electrodes in microfluidic devices fabricated in a single photolithography step
TW Herling, T Müller, L Rajah, JN Skepper, M Vendruscolo, TPJ Knowles
(2013)
Integration and characterization of solid wall electrodes in microfluidic devices fabricated in a single photolithography step
TW Herling, T Müller, L Rajah, JN Skepper, M Vendruscolo, TPJ Knowles
Applied Physics Letters
(2013)
102
Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2
L-Q Xu, S Wu, AK Buell, SIA Cohen, L-J Chen, W-H Hu, SA Cusack, LS Itzhaki, H Zhang, TPJ Knowles, CM Dobson, ME Welland, GW Jones, S Perrett
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
(2013)
368
Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2.
LQ Xu, S Wu, AK Buell, SIA Cohen, LJ Chen, WH Hu, SA Cusack, LS Itzhaki, H Zhang, TPJ Knowles, CM Dobson, ME Welland, GW Jones, S Perrett
Philosophical transactions of the Royal Society of London. Series B, Biological sciences
(2013)
368
Atomic structure and hierarchical assembly of a cross-β amyloid fibril
AWP Fitzpatrick, GT Debelouchina, MJ Bayro, DK Clare, MA Caporini, VS Bajaj, CP Jaroniec, L Wang, V Ladizhansky, SA Müller, CE MacPhee, CA Waudby, HR Mott, A De Simone, TPJ Knowles, HR Saibil, M Vendruscolo, EV Orlova, RG Griffin, CM Dobson
Proc Natl Acad Sci U S A
(2013)
110
Electrostatic effects in filamentous protein aggregation
AK Buell, P Hung, X Salvatella, ME Welland, CM Dobson, TPJ Knowles
Biophys J
(2013)
104
The Kinetics and Mechanisms of Amyloid Formation
SIA Cohen, M Vendruscolo, CM Dobson, TPJ Knowles
(2013)

Research Interest Groups

Telephone number

01223 336344

Email address