University Assistant Professor

Dr Seán Kavanagh is an Assistant Professor in Simulation of Energy Materials and a council member for the Lennard Jones Centre for materials modelling.

He heads the Simulation of Advanced Materials (SAM) lab, a research team that uses state-of-the-art computational methods to design and develop next-generation materials; primarily targeting energy applications. We are happy to hear from prospective PhD candidates, see SAM-lab.net for more details!

The SAM lab works at the intersection of materials science, chemistry, physics and artificial intelligence (AI); developing and deploying techniques from quantum chemistry (e.g., DFT), solid-state physics and machine learning (ML, primarily machine-learned interatomic potentials (MLIPs)) to understand the atomic-level properties of materials. Using insights from these calculations, run on high-performance computers, one can predict, design and optimise the performance of materials in real-world technologies. Further details on research interests can be found at SAM-lab.net.

The SAM lab has a particularly strong interest in materials for energy conversion (such as solar cells, photocatalysts and thermoelectrics) and energy storage (e.g. batteries), as well as the development of computational packages to support its research, primarily based in Python. These computational tools are open-source and are used by thousands of other researchers worldwide.

The SAM lab is actively recruiting! You can reach out to Seán via email (sk2045@cam.ac.uk), and it is helpful to include a brief description of your background, a CV and any relevant experience, to help determine potential research projects.

 

Publications

Defect-Limited Mobility and Defect Thermochemistry in Mixed A-Cation Tin Perovskites: (CH3NH3)1–xCsxSnBr3
DC Asebiah, EM Mozur, AA Koegel, A Nicolson, SR Kavanagh, DO Scanlon, OG Reid, JR Neilson
ACS Applied Energy Materials
(2024)
7
Oxygen Dimerization as a Defect-Driven Process in Bulk LiNiO2
AG Squires, L Ganeshkumar, CN Savory, SR Kavanagh, DO Scanlon
ACS energy letters
(2024)
9
Upper efficiency limit of Sb 2 Se 3 solar cells
X Wang, SR Kavanagh, DO Scanlon, A Walsh
Joule
(2024)
8
Band Degeneracy and Anisotropy Enhances Thermoelectric Performance from Sb2Si2Te6 to Sc2Si2Te6
W Dou, KB Spooner, SR Kavanagh, M Zhou, DO Scanlon
J Am Chem Soc
(2024)
146
NaBiS2 as a Next-Generation Photovoltaic Absorber
Y-T Huang, SR Kavanagh, M Righetto, M Rusu, I Levine, T Unold, SJ Zelewski, AJ Sneyd, K Zhang, L Dai, AJ Britton, J Ye, J Julin, M Napari, Z Zhang, J Xiao, M Laitinen, L Torrente-Murciano, SD Stranks, A Rao, LM Herz, DO Scanlon, A Walsh, RLZ Hoye
2024 IEEE 52ND PHOTOVOLTAIC SPECIALIST CONFERENCE, PVSC
(2024)
00
Li‐Site Defects Induce Formation of Li‐Rich Impurity Phases: Implications for Charge Distribution and Performance of LiNi0.5−xMxMn1.5O4 Cathodes (M = Fe and Mg; x = 0.05–0.2)
BE Murdock, J Cen, AG Squires, SR Kavanagh, DO Scanlon, L Zhang, N Tapia-Ruiz
Advanced materials (Deerfield Beach, Fla.)
(2024)
36
Machine-learning structural reconstructions for accelerated point defect calculations
I Mosquera-Lois, SR Kavanagh, AM Ganose, A Walsh
Npj Computational Materials
(2024)
10
Oxygen dimerization as a defect-driven process in bulk LiNiO2
AG Squires, L Ganeshkumar, SR Kavanagh, CN Savory, DO Scanlon
(2024)
doped: Python toolkit for robust and repeatable charged defect supercell calculations
SR Kavanagh, AG Squires, A Nicolson, I Mosquera-Lois, AM Ganose, B Zhu, K Brlec, A Walsh, DO Scanlon
The Journal of Open Source Software
(2024)
9
doped: Python toolkit for robust and repeatable charged defect supercell calculations
SR Kavanagh, AG Squires, A Nicolson, I Mosquera-Lois, AM Ganose, B Zhu, K Brlec, A Walsh, DO Scanlon
(2024)

Research Group

Research Interest Groups

Email address