skip to content

Yusuf Hamied Department of Chemistry

 

Laser Spectroscopy has revolutionised the determination of molecular structure. The Cambridge Infrared Laser Spectroscopy Group uses a variety of novel laser based techniques to study molecules in situations as diverse as low pressure electric discharges (plasmas) and on surfaces buried under liquids. The shapes of short lived molecules like free radicals and ions are precisely determined using solid state diode lasers in combination with sensitive, species- specific detection methods like Velocity Modulation. Recent diode laser spectroscopy of free radicals has included measurement of the band strength of the methyl radical, CH3. This is required for detection and density measurements of CH3 in the atmospheres of the giant planets Saturn and Neptune. We are now enhancing the sensitivity of IR laser absorption spectroscopy in a fruitful collaboration with German colleagues using a Cavity Ring Down (CRD) spectrometer built around novel Quantum Cascade Lasers. The group is also heavily involved in non linear laser spectroscopy particularly the interface specific technique of Sum Frequency Generation (SFG). We use SFG to gain insight into adsorption at interfaces on a molecular scale e.g. of surfactants and polymers. We use nano and picosecond lasers for SFG in Cambridge and femtosecond SFG to quantify non linear optical effects in Langmuir Blodgett films in a joint project with co-workers in Hokkaido, Japan. The aim is eventually to use SFG to study biological systems like the lung surfactants. In addition to our international projects, which involve overseas visits by our research students, much of our work on surfaces and interfaces is strongly supported by industry.



 



 


 


 

Publications

Infrared laser absorption spectroscopy of rotational and vibration rotational transitions of HeH+ up to the dissociation threshold
Z Liu, PB Davies
– Journal of Chemical Physics
(1997)
107,
337
Coadsorption of Sodium Dodecyl Sulfate and Dodecanol at a Hydrophobic Surface
RN Ward, PB Davies, CD Bain
– The Journal of Physical Chemistry B
(1997)
101,
1594
Infrared laser spectroscopy of free radicals and ions. I. The fundamental band of NF(X3Ʃ-)
PB DAVIES, WJ ROTHWELL
– Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
(1997)
389,
205
High-Resolution Infrared Diode Laser Spectroscopy of CBr
AJ Marr, TJ Sears, PB Davies
– Journal of Molecular Spectroscopy
(1997)
184,
413
INFRARED-LASER SPECTROSCOPY OF FREE-RADICALS AND IONS .3. THE V3 BAND OF NF2(X2B1)
PB DAVIES, PA HAMILTON
– Proceedings of the Royal Society A
(1997)
393,
397
INFRARED-LASER SPECTROSCOPY OF FREE-RADICALS AND IONS .2. ANALYSIS OF THE NU-1 BAND OF NF2 (XB-2(1))
PB DAVIES, PA HAMILTON, W LEWISBEVAN, DK RUSSELL
– Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
(1997)
392,
445
ANALYSIS OF LASER MAGNETIC-RESONANCE SPECTRA OF NH2(X2B1)
PB DAVIES, DK RUSSELL, BA THRUSH, HE RADFORD
– Proceedings of the Royal Society A
(1997)
353,
299
Infrared laser spectroscopy of cations
PB DAVIES
– Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
(1997)
324,
121
Effect of oxygen on methyl radical concentrations in a CH4/H2 chemical vapor deposition reactor studied by infrared diode laser spectroscopy
WY Fan, J Ropcke, PB Davies
– Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
(1996)
14,
2970
Infrared laser spectroscopy of the A 2Π u ← X 2Σ+ g system of the Si−2 anion
Z Liu, PB Davies
– The Journal of Chemical Physics
(1996)
105,
3443
  • <
  • 16 of 30
  • >

Research Group

Telephone number

01223 336460

Email address

pbd2@cam.ac.uk