skip to content

Senior Research Associate

Dr Richard M. Parker is a senior research associate in the Bio-inspired research group (University of Cambridge, UK), where he exploits self-assembly within microfluidically-templated droplets to prepare novel material architectures; with interests ranging from supramolecular microcapsules (Adv Funct Mater 2015) and gels (JACS 2015), to bio-inspired photonic microparticles (ACS Nano 2016 & 2019) and structurally-coloured films (Adv Funct Mater 2019).


Richard graduated from the University of Southampton (UK) with a MChem degree in 2007, followed by the award of a Ph.D. in Chemistry in 2011. His Ph.D. studies formed the basis of a new interdisciplinary collaboration between Dr Martin Grossel (Chemistry) and Prof Peter Smith (Optoelectronics Research Centre) that centred on the development of a photonic sensor platform for “lab-on-chip” applications. This focused on embedding a photonic Bragg grating refractometer within a microfluidic network and modifying the sensor surface using supramolecular/polymer chemistry to develop highly-sensitive, chemically-specific sensors. After completion of his doctoral studies, he continued researching in the fields of photonic sensors, fibre optics and supramolecular chemistry at the University of Southampton until 2012. He then joined the Microdroplets research group of Prof Chris Abell (University of Cambridge, UK) to explore how supramolecular interactions can be applied to encapsulate microfluidic droplets. In 2015 he joined the Bio-inspired Photonics group lead by Prof Silvia Vignolini, where he applies his knowledge of microfluidics and photonics to produce photonic pigments.



ORCID iD icon



Bioinspired Photonic Materials from Cellulose: Fabrication, Optical Analysis, and Applications
RM Parker, TG Parton, CLC Chan, MM Bay, B Frka-Petesic, S Vignolini
– Accounts of Materials Research
Exploiting the Thermotropic Behavior of Hydroxypropyl Cellulose to Produce Edible Photonic Pigments
S Ming, X Zhang, C Chan, Z Wang, M Bay, R Parker, S Vignolini
– Advanced Sustainable Systems
Tuning the Color of Photonic Glass Pigments by Thermal Annealing
Z Wang, R Li, Y Zhang, CLC Chan, JS Haataja, K Yu, RM Parker, S Vignolini
– Advanced Materials
The sustainable materials roadmap
M Titirici, SG Baird, TD Sparks, SM Yang, A Brandt-Talbot, O Hosseinaei, DP Harper, RM Parker, S Vignolini, LA Berglund, Y Li, HL Gao, LB Mao, SH Yu, N Díez, GA Ferrero, M Sevilla, PÁ Szilágyi, CJ Stubbs, JC Worch, Y Huang, CK Luscombe, KY Lee, H Luo, MJ Platts, D Tiwari, D Kovalevskiy, DJ Fermin, H Au, H Alptekin, M Crespo-Ribadeneyra, VP Ting, TP Fellinger, J Barrio, O Westhead, C Roy, IEL Stephens, SA Nicolae, SC Sarma, RP Oates, CG Wang, Z Li, XJ Loh, RJ Myers, N Heeren, A Grégoire, C Périssé, X Zhao, Y Vodovotz, B Earley, G Finnveden, A Björklund, GDJ Harper, A Walton, PA Anderson
– JPhys Materials
Structurally Colored Radiative Cooling Cellulosic Films
W Zhu, B Droguet, Q Shen, Y Zhang, TG Parton, X Shan, RM Parker, MFL De Volder, T Deng, S Vignolini, T Li
– Advanced Science
Deconvoluting the Optical Response of Biocompatible Photonic Pigments
Z Wang, CLC Chan, JS Haataja, L Schertel, R Li, GT van de Kerkhof, OA Scherman, RM Parker, S Vignolini
– Angew Chem Int Ed Engl
Deconvoluting the Optical Response of Biocompatible Photonic Pigments
Z Wang, CLC Chan, JS Haataja, L Schertel, R Li, GT van de Kerkhof, OA Scherman, RM Parker, S Vignolini
– Angewandte Chemie
Revealing the Structural Coloration of Self-Assembled Chitin Nanocrystal Films
A Narkevicius, RM Parker, J Ferrer-Orri, TG Parton, Z Lu, GT van de Kerkhof, B Frka-Petesic, S Vignolini
– Advanced Materials
Cellulose photonic pigments
RM Parker, TH Zhao, B Frka-Petesic, S Vignolini
– Nature communications
Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles.
TG Parton, RM Parker, GT van de Kerkhof, A Narkevicius, JS Haataja, B Frka-Petesic, S Vignolini
– Nature communications
  • 1 of 7
  • >

Research Fellow

Telephone number

01223 334319 (shared)

Email address