Tips on using this search form
- All search terms are case-insensitive
- If you specify more than one search option (e.g. you search for both "Authors" and "Paper title") then the publications returned will be those that match all of your search terms
- To reset the search form, click here
- Currently displaying 21 - 40 of 574 publications
Applying atomistic neural networks to bias conformer ensembles towards bioactive-like conformations
– Journal of cheminformatics
(2023)
15,
124
(doi: 10.1186/s13321-023-00794-w)
Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-Like Molecules
– Journal of chemical theory and computation
(2023)
20,
164
(doi: 10.1021/acs.jctc.3c00710)
Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules
(2023)
On the difficulty of validating molecular generative models realistically: a case study on public and proprietary data.
– J Cheminform
(2023)
15,
112
(doi: 10.1186/s13321-023-00781-1)
ACEpotentials.jl: A Julia implementation of the atomic cluster expansion
– J Chem Phys
(2023)
159,
164101
(doi: 10.1063/5.0158783)
Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank.
(2023)
(doi: 10.1101/2023.10.15.562398)
Machine Learning Interatomic Potentials to Predict Bond Dissociation Energies
(2023)
(doi: 10.17863/CAM.104854)
MAVEN: Compound mechanism of action analysis and visualisation using transcriptomics and compound structure data in R/Shiny
– BMC Bioinformatics
(2023)
24,
344
(doi: 10.1186/s12859-023-05416-8)
ACEpotentials.jl: A Julia Implementation of the Atomic Cluster Expansion
(2023)
(doi: 10.48550/arxiv.2309.03161)
wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows
– The Journal of chemical physics
(2023)
159,
124801
(doi: 10.1063/5.0156845)
Editorial overview: Artificial intelligence (AI) methodology in structural biology.
– Current Opinion in Structural Biology
(2023)
82,
102676
(doi: 10.1016/j.sbi.2023.102676)
Improving de novo molecule generation for structure-based drug design
(2023)
(doi: 10.17863/CAM.107998)
From Pixels to Phenotypes: Integrating Image-Based Profiling with Cell Health Data Improves Interpretability
(2023)
(doi: 10.1101/2023.07.14.549031)
Transferable machine learning interatomic potential for bond dissociation energy prediction of drug-like molecule
(2023)
(doi: 10.26434/chemrxiv-2023-l85nf)
wfl Python Toolkit for Creating Machine Learning Interatomic Potentials and Related Atomistic Simulation Workflows
(2023)
(doi: 10.48550/arxiv.2306.11421)
Merging Bioactivity Predictions from Cell Morphology and Chemical Fingerprint Models Using Similarity to Training Data
– Journal of Cheminformatics
(2023)
15,
56
(doi: 10.1186/s13321-023-00723-x)
Explaining Blood–Brain Barrier Permeability of Small Molecules by Integrated Analysis of Different Transport Mechanisms
– Journal of Medicinal Chemistry
(2023)
66,
7253
(doi: 10.1021/acs.jmedchem.2c01824)
Prediction of Compound Plasma Concentration-Time Profiles in Mice Using Random Forest
– Mol Pharm
(2023)
20,
3060
Benchmarking causal reasoning algorithms for gene expression-based compound mechanism of action analysis.
– BMC bioinformatics
(2023)
24,
154
(doi: 10.1186/s12859-023-05277-1)
Deep generative models for 3D molecular structure.
– Curr Opin Struct Biol
(2023)
80,
102566
(doi: 10.1016/j.sbi.2023.102566)