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Since 1999, so-called synergic bases have gained traction for 
their utility in selective organic synthesis.[2] Alkali metal 
aluminates and zincates have enabled advances in the 
elaboration of aromatics and attention has now switched to 
lithium cuprate bases and Directed ortho Cupration (DoC) as a 
precursor to commercially attractive noble catalyst-free C–C 
bond formation (e.g. below) .[3] 
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Introduction 

Like other cuprates, bis(amido)cuprate types are differentiated 
by the inclusion or not of LiX (X = inoganic anion; above). 
Recently we have elucidated the true nature of Lipshutz (X = 
CN; left) and Gilman bis(amido)cuprates.[3,4] Studies are now 
extending to the use of various amido ligands in order to 
reduce system costs and we report here advances in DoC using 
2,2,6,6-tetramethylpiperidine (TMPH) and cis-2,6-
dimethylpiperidine (DMPH) as amido ligand sources.  

The bridging activity of cyanide has been  
replicated using  copper(I) halides to yield  
what  can  be  regarded  as  ‘Lipshutz-type’  cuprates.   
These establish the generality of the R2Cu(X)Li2 (X = CN, halide) motif.[5,6] 

To probe the role of steric effects in controlling  
amidocuprate reactivity we have replaced TMP  
with less bulky DMP. DMPH also retails at a fraction  
of the cost of TMPH. In the case of DMPLi, reaction  
with copper(I) halides has yielded an unprecedented series of complexes.[1] 

The advent of cuprate adducts  

Lipshutz-type components 
that form part of the dimer 
of TMP-based chloride 2 
(left top) and DMP-based 
adduct 5 (left bottom). In 2 
the piperidide rings lie flat 
in order that the axial Me-
groups (red) do not 
sterically interact. In 5 only 
equatorial Me-groups are 
present (blue) and the 
piperidide rings can reside 
face-on. 

Our own prior art has shown that Gilman cuprates show inferior DoC activity 
when compared to Lipshutz-type.[3] However, by DFT analysis a Gilman 
monomer accessed from a Lipshutz precursor, emerges as the reactive 
base;[5]

 elimination of solvated LiCN from Lipshutz complex 
(Me2N)2Cu(CN)Li2(S) yields a Gilman-containing complex (IM1G) that reveals 
a reduced +14.9 kcal/mol barrier to DoC. 

Interpreting adducts e.g. 6 as resulting from  
LiX (X = Br) elimination from the  
corresponding Lipshutz-type 
dimer we monitored the synthesis of 8 
using    a  ‘Lipshutz-type‘  4:2:1  ratio  (i.e.  2  eq.  Cu  
per arene). Meanwhile the use of 6 gave an 
essentially identical yield, suggesting adducts  
are an efficient source of Gilman monomers. 

Figure 1. DFT modelling (B3LYP using SVP all-electron basis set for Cu and 6-31+G* for other atoms) 
of pre-reaction complex formation (IM1) and subsequent access to the transition state (TS1) for 
DoC.[5] Red data: Gilman pathway via elimination of LiCN(S) from Lipshutz species 
(Me2N)2Cu(CN)Li2(S). Blue data: Lipshutz pathway. S = Me2O. 

The ability of an adduct to 
effect DoC has been 
modelled. Conversion of 
reactants RTLG to complex 
IM1G between 
(Me2N)2CuLi(OMe2) and 
N,N-dimethylbenzamide is 
accompanied by a change 
in 'G of only +6.1 
kcal/mol. This reinforces 
our conclusion that 
adducts such as 6 
represent viable new DoC 
reagents.[6] 

Figure 2. DFT modelling of pre-reaction complex formation 
(IM1G) from a cuprate adduct.[1] S = Me2O. 


