

New Insights into the Pinned Glass Transition from an Energy Landscapes Approach

S. P. Niblett^{1,a}, V. K. de Souza^{1,b}, R. L. Jack^{2,c} and D. J. Wales^{1,d}

¹Department of Chemistry, University of Cambridge, UK ²Department of Physics, University of Bath, UK ^asn402@cam.ac.uk, ^bvkd21@cam.ac.uk, ^cr.jack@bath.ac.uk ^ddw34@cam.ac.uk

Introduction

- The laboratory glass transition is a kinetic phenomenon. Is there an associated thermodynamic "ideal glass transition" that we cannot access experimentally?
- Starting from a reference structure drawn from an equilibrated simulation, pinning a randomly selected[1] fraction c of the atoms (freezing their positions) reduces the number of thermodynamic states available to the system. This means that the configurational entropy decreases[2]. At high c, the number of states becomes small (sub-extensive).
- It has been suggested[2, 3] that this change represents a thermodynamic glass transition, as predicted by the RFOT theory[4, 5, 6, 7]. Extrapolating the corresponding critical temperature to the case c = 0 would give us the ideal transition temperature T_K.
- The dynamics of supercooled liquids are commonly described in terms of their Potential Energy Landscape (PEL)[8, 9]. How does pinning some particles affect the PEL?

Research Questions and Hypotheses

- We have studied a 256-particle Kob-Andersen liquid with periodic boundary conditions and number density 1.2.
- Many thermodynamic states are available at low c. Do these correspond to the superstructures ("funnels") on the PEL?

- At high pinning fraction *c*, only one state is populated at equilibrium (corresponding to the reference structure).
- How does the change between these two regimes take place?
- Smooth crossover hypothesis: gradual increase with c in energies of competing states, until only the reference structure is significantly populated.
- Sharp transition hypothesis: multiple low-energy states remain up to a critical c = c*, at which all except the reference structure disappear. Energy barriers between states increase with c.
- The RFOT model[4, 5, 6, 7] implies that a sharp transition will be observed at low T.
- At higher T, a smoother crossover will be observed[10].

Distinct states on the landscape

Disconnectivity graph for c = 0.15. Minima are coloured according to different structures defined using mutual overlap[3, 11]:

$$Q_{ab} = rac{1}{N_A} \sum_{i,j}^{N_A} heta(0.3 - r_{ia,jb})$$

 $r_{ia,jb}$ is the distance from atom *i* in configuration *a* to atom *j* in configuration *b*.

Configurations *a* and *b* belong to the same structure if $Q_{ab} > 0.7$.

at *c* = 0.16.

Basinhopping Results

Histogram of Q vs E for minima located by parallel Histogram of Q vs E for minima located by PTBH

Disconnectivity graph for BLJ with 16% of particles pinned at random.

tempering basin hopping (PTBH) at c = 0.17.

For any given reference structure and choice of pinned atoms, we can identify a maximum value of *c* where low-energy structures exist that are distinct from the reference.

- Proportion of minima having overlap < 0.7 with the reference structure as a function of *c*.
- Results for 5 different sets of pinned atoms are shown.
- Only the 25% of minima with the lowest energies are used in each curve.
- Considerable variation is seen in the position and sharpness of the transition.

Disconnectivity graph for BLJ with 18% of particles pinned at random.

- Minima are coloured according to their overlap with the starting minimum.
- Most funnels on the disconnectivity graph are entirely one colour, so minima within a funnel have similar structures.
- The low-*c* graph is very similar to an unpinned landscape: many different funnels i.e. many different states.
- The c = 0.16 graph shows distinct states moving to higher energies, so their equilibrium population decreases.
- The high-*c* landscape also has multiple funnels with low overlap. But they are too

Conclusions

- Pinning a glass former changes the PEL dramatically, giving a well-defined global minimum state.
- Different structures, or "distinct packings" of the atoms may be identified with superstructures on the PEL.
- As pinning fraction is increased, structures distinct from the reference structure gradually increase in energy.
- At high pinning fractions, all states except one are too high in energy to be significantly populated at equilibrium.
- For a given structure, we can use the landscape to identify a region of pinning fractions c in which the behaviour changes from low-c to high-c behaviour.
- The change from many available states to one state appears to occur via a smooth crossover.

Outstanding Questions

- Is the observed smooth crossover a finite-size effect? How does this behaviour change with T?
- How is the landscape affected by choice of reference structure and pinned atoms?

Acknowledgements

This work was supported by the University of Cambridge, the Department of Chemistry and St Catharine's College. The pele software package may be obtained from https://github.com/pele-python/pele

high in energy to be significantly populated at equilibrium. So these do not constitute distinct thermodynamic states.

Bibliography

- [1] Berthier, L., and Kob, W., Phys. Rev. E, 85, 011102 (2012)
- [2] Cammarota, C. and Biroli, G., P.N.A.S., 109, 8855 (2012)
- [3] Ozawa, M., Kob, W. Ikeda, A. and Miyazaki, K., *P.N.A.S.*, **112**, 6914 (2015)
- [4] Kirkpatrick, T., Thirumalai, D. and Wolynes, P., Phys. Rev. A, 40, 1045 (1989)
- [5] Mézard, M. and Parisi, G., *Phys. Rev. Lett.*, **82**, 747 (1999)
- [6] Bouchaud, JP. and Biroli, G., *J. Chem. Phys.*, **121**, 7347 (2004)
- [7] Lubchenko, V. and Wolynes, P., Ann. Rev. Phys. Chem., 58, 235 (2007)
- [8] Wales, D., *Energy Landscapes* (Cambridge University Press, Cambridge, 2003)
- [9] Debenedetti, P. and Stillinger, F., *Nature*, **410**, 259 (2001)
- [10] Kob, W. and Berthier, L., Phys. Rev. Lett., **110**, 245702 (2013)
- [11] Franz, S. and Parisi, G., Phys. Rev. Lett., 79, 2487 (1997)