1. Computing the dielectric constant ¢
at constant dielectric displacement D

1.1 Constant E and D hamiltonians

e The method is the finite temperature classical variant of
the constant D method developed by Stengel, Spaldin
and Vanderbilt [1].

e The extended Hamiltonian at constant displacement field
D is:

U(D,v) = Hppel(v) + 1 (D~ 4xP) (1)

e The polarization P is a multi-valued quantity, but molecu-
lar structure provides a natural gauge.

e Through Legendre transform, it can be shown that the ex-
tended Hamiltonian at constant macroscopic field E is [1]:

F(E,v) = Hppc(v) — 2 E - P(v) (2)

e They are corresponding to constant charge and constant
voltage setups of a “virtual” parallel plate capacitor.
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Figure 1: Parallel plate capacitor at a) constant electric field
FE. and b) at constant electric displacement D,..

1.2 Polarization fluctuation and relaxation of
liquid waterat E=0and D =0

e A change of electric boundary not only affects the size of
polarization fluctuation but also the time scale of polar-
ization relaxations.

e The ratio according to Debye theory is 71 /77 = €. From
our molecular dynamics (MD) simulation, 7 is 10.3 ps
and 77 1s 0.3 ps (short time oscillations).
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Figure 2: Simulation of bulk liquid water (SPC/E) at E = 0
using the hamiltonian of Eq. 2 and D = 0 using the hamil-
tonian of Eq. 1: a) Time evolution of P,, the x component
of the polarization; b) Corresponding autocorrelation func-
tion defined as Cp p = (Py(0)Py(t))/{(Pr(0)P(0)). The in-
set shows the short time behaviour of Cp p for D = 0.

e We can show that the variance of polarization at £ = 0
and D = 0 has the following relation [2]:

(P?)E—0 — (P)p_y
(P2)p=p — (P)p_,

From our simulations, we found the ratio is 71 for SPC/E
water (e of SPC/E water is about 72).
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e This relation is also reflected in the distance dependent
Kirkwood G-factor G g (r).
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Figure 3: Comparison of the distance dependence of the

Kirkwood G-factor G (r) evaluated under E = 0 and D = 0
constraints.

1.3 Non-linearity of the dielectric constant and
the polarization at finite E and finite D

e We found the non-linear effect in the P,.(D) curve is much
less pronounced than that in the P.(F).
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Figure 4: Polarization as a function of electric field E and
displacement D determined from constant E,. and constant
D.. molecular dynamics of liquid water respectively.

e |t is found that the curvature of the curvature in ¢(D) is
opposite to the curvature in ¢(E).

e The convergence time of the dielectric constant under
constant D, turns out to be shorter.

e The constant D method may be therefore the best option
for density functional theory (DFT) based MD.
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Figure 5: a) The static dielectric constant ¢ at constant
E., and constant D,; b) The accumulating average of ¢ at
E, =0.01 V/Aand D, = 0.684 V/A.

2. Computing the dielectric constant
of the electric double layer (EDL) at
electrified interface

2.1 Supercell modeling of electrolyte-
electrified interface with a net total dipole

e We are interested in modeling EDL at electrolyte-oxide
interface at high pH.

e Unlike our previous approach [3], the current setup con-
tains two chemically inequivalent EDLs (net dipole).

e The charging of the EDL is therefore done at fixed chem-
ical composition.

e The remaining field in the oxide leads to a pair of non-
neutral EDLs.
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e We tested the above idea with a classical toy model.

Oxide (aka vacuum slab)
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Figure 6: The electrostatic potential of the classical
electrolyte-electrified interface system with a net total
dipole.

2.2 Periodic EDL model

e We solved the Maxwell equations for the corresponding
continuum EDL model under periodic boundary condi-
tion. The total energy is

Utot = 27TAU(%ZUCLC—SZCLleEDL/(lva(3—8lab€EDL T 2ZEDL) (4)

and the net charge of the EDL is

Qnet = (UO — U)A — UOAQZEDL/(Zvac—sla,bGEDL + 2ZEDL)

(5)
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Figure 7: The corresponding continuum EDL model with
periodic boundary condition.

2.3 Extracting the dielectric constant of EDL

e The dielectric constant of EDL can be extracted by fitting
the continuum solution to the MD data.

-136.25
«
-136.50 +
%
_ =136.75F
-
= -137.00 -
= _137.25}
) x MD data
-137.50 4 Periodic EDL model (ggpL = 5, lepr = 10 A)
-137.75 -4 | | : ‘
20 40 60 80 100 120
041 ¢ MD data
& - Periodic EDL model (ggpr = 5, lgp. = 10 A)
03 *
G
s 0.2 ‘o
& P
.,\‘.“. |
0.1F : .~--'. ....... > |
0_ | ! | | | !
20 40 60 80 100 120

Vacuum slab (A)

Figure 8: The total potential energy and the net charge as
functions of the the vacuum slab size.
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