Capturing Sunlight for Sustainable Fuel Generation The Reisner Group

Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK reisner@ch.cam.ac.uk www-reisner.ch.cam.ac.uk

Artificial Photosynthesis

Conversion of solar energy into fuels is one of the most promising means of meeting future global energy demands, cleanly and sustainably. We develop hybrid systems for each half of the water splitting reaction that address the key challenges of **efficient light absorption**, **effective charge separation**, and **efficient redox catalysis** to generate high energy fuels.

Our research is multi-disciplinary, spanning biological, synthetic, and materials chemistry.

> Biological materials:

- Incorporated as catalysts
- \cdot Studied to inspire catalyst design

> Transition metal complexes: · Photosensitizers

- \cdot Solution and surface-bound redox catalysts
- > Nanostructured materials: Photoactive materials

· Conductive support/electron relay for catalysts

Our ultimate goal is to integrate these systems into a photoelectrochemical cell for complete photocatalysis.

H+ Reduction

Dye-sensitized nanoparticle-catalyst systems:^[1]

- Solution-based aqueous system, pH 7.
- Highly efficient with both small molecule catalysts (e.g. CoP, shown) and an enzyme known as hydrogenase.
- > Dye and catalyst bound *via* groups with high surface binding affinity.
- > Dye-sensitized TiO₂ allows for long-lived charge-separated state (up to 1 s) and electron transfer from TiO₂ to CoP is rapid (10 μ s).

- > Photosystem II-film photoelectrochemistry, pH 6.5.
- mesoITO is transparent, conducting and allows for high PSII loading
- Direct electron transfer from PSII to electrode
- Electron transfer enhanced by mediator, orientation or covalent binding.

Molecular catalyst-integrated photocathodes:^[3]

- ≻ Electrochemical reduction of aqueous H⁺, pH 7.
- Cobalt catalyst has high affinity for nanostructured surface.
- Remains molecular species on *meso*ITO
- Excellent stability and multi-colouration for electrochromic devices

All-inorganic nanostructured photocathodes:^[5]

- > Nanostructured Cu_2O hybrid electrodes, pH 6.
- \succ High current density due to high surface area.
- \succ NiO_x acts as catalyst and enhances stability.
- Successfully coupled to WO₃ nanosheet photoanode for complete water splitting

All-inorganic nanocomposite electrodes:^[4]

- Leaf-like nanostructured electrode, pH 9.2.
- > One-step procedure introduces stability layer and co-catalyst
- > Mimics key functional features of PSII.
- > TiO₂ | NiO_x enhances charge separation and stability.

 \triangleright Reduction of aqueous CO₂ gives renewable C source

Cu|nanoCu₂O|NiO_x

[NiFeSe] hydrogenase and enzyme mimics:^[6]

- Visible light driven H₂ evolution with O₂ tolerant [NiFeSe] hydrogenase
- [NiFeSe] active site mimics as precursors for active Ni-nanoparticle films.

Developing catalysts for CO₂ transformation is a key target.

 Towards a sustainable carbon-based economy:

 Image: Christian Doppler

 Co2+H20

 Closed cycle

 Closed cycle

 (i) Fischer

 (ii) Fischer

 Combustion

 Contraction

 (iv) combustion

 (iv) distribution

 (iv) distribution

SynGas

[1] (a) Reisner, E. *et al. J. Am. Chem. Soc.* 2009, *131*, 18457; (b) Lakadamyali, F. and Reisner, E. *Chem. Commun.* 2009, *47*, 1695; (c) Lakadamyali, F.; *et al. Angew. Chem. Int. Ed.* 2012, *51*, 9381; (d) Lakadamyali, F. *et al. Chem. Eur. J.* 2012, *18*, 15464.
[2] (a) Kato, M. *et al. J. Am. Chem. Soc.* 2012, *134*, 8332; (b) Kato, M.; *et al. J. Am. Chem. Soc.* 2013, *in press* (DOI:10.1021/ja404699h)
[3] (a) Muresan, N. *et al. Angew. Chem. Int. Ed.* 2012, *51*, 12749; (b) Scherer, M. R. J. *et al.*, in preparation.
[4] (a) Lai, Y.-H. *et al. Chem. Commun.*, 2013, 49, 4331; (b) Lai, Y.-H., *et al. Chem. Eur. J.* 2013, *in press* (DOI: 10.1002/chem.201302641)
[5] Lin, C.-Y., *et al. Chem. Sci.*, 2012, *3*, 3482.

UNIVERSITY OF CAMBRIDGE

[6] (a) Sakai, T., et al. submitted; (b) Wombwell, C. et al. submitted.