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1. BACKGROUND

I Climate change is one of the greatest challenges that human civilisation
will face in the 21st century
! realistic model projections are crucial for an informed climate policy.

I Climate models become more and more sophisticated
! by incorporating an " number of earth system processes
! due to " scientific understanding
! due to " model resolutions

I In spite of steadily " computing power, many processes can still not be
considered in climate change simulations.

I Stratospheric chemistry-climate interactions are a classic exam-
ple of processes which are commonly not treated interactively,
i.e. are not allowed to adapt consistently to the modelled changes of
the environment (to avoid high computational costs).

Aim: To isolate the impact of neglecting changes in stratospheric O3 in a state-of-the-art climate model.

2. MODEL CONFIGURATION

I HadGEM3 model (UMUKCA-AO configuration)1,2.

I Atmosphere/land-surface = Unified Model @
vn7.3 from the UK Met Office, resolution: 3.75 �lon
x 2.5 �lat, 60 vert levs  84 km.

I Chemistry scheme = Chemistry for the
Stratosphere (CheS) developed in the UK
Chemistry and Aerosol (UKCA) project3.

I Interactive ocean (NEMO4, 2� resolution, 31
vert levs > -5km) and sea-ice (CICE5) models.

3. MODEL SIMULATIONS

I piControl: [CO2] = 285 ppmv.

I Abrupt 4xCO2: [CO2] abruptly " to 1140 ppmv.

I Interactive and non-interactive versions
! Non-interactive runs using prescribed monthly-
mean climatologies of O3, CH4, N2O.

I 3D/2D climatologies (X) = non-interactive runs
using full 3D or zonal mean (2D) chemical clima-
tologies from interactive run X.

Label Description Chemistry
A piControl Interactive
A1 piControl 3D climatologies (A)
A2 piControl 2D climatologies (A)
B Abrupt 4xCO2 Interactive
B1 Abrupt 4xCO2 3D climatologies (B)
B2 Abrupt 4xCO2 2D climatologies (B)
C1 Abrupt 4xCO2 3D climatologies (A)
C2 Abrupt 4xCO2 2D climatologies (A)

6. OZONE & WATER VAPOUR CHANGES

Figure 3 | Gregory regression plot for the CS-LW component.

I �↵CS,LW must be due to � in greenhouse gases other than CO2.
I Under 4xCO2: O3 " in the upper stratosphere (⇠30-50km) and
# in the lower tropical stratosphere (⇠20 km, 30N-30S, Figure 4a).

I Explanation for the O3 ": T-dependency of O3 depletion cycles

X + O3 ! XO + O2

XO + O ! X + O2

with the catalytic radical species X (e.g. NO, OH, Cl), which slow
down with stratospheric cooling under 4xCO2 (Figure 4b)7.

I Explanation for the O3 #: acceleration of the wave-driven strato-
spheric meridional overturning circulation under " CO2

8.

I 30N-30S: �O3 ! �T due to SW/LW absorption/emission (Fig. 4c)
! important due to trop. to strat. air transport in this region.

I Cooling effect of �O3 in the lower strat. = regulating factor for entry
of water vapour into the strat. (Clausius-Clapeyron, Figure 4c/4d).

I O3 and water vapour = greenhouse gases ! greenhouse effect #
! RF of -0.68Wm-2 (O3)/-0.78Wm-2 (water vapour) ! �CS-LW.

Figure 4 | Annual, zonal mean differences. Runs as labelled. a �O3 by 4xCO2,
b �T by 4xCO2, c �T by �O3 and d �water vapour by �O3.

4. GLOBAL WARMING RESPONSE
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Figure 1 | Temporal evolution of the annual and global mean surface tem-
perature anomalies. Interactive chemistry runs are given in solid lines, dashed/
dotted lines show 3D/2D non-interactive experiments.

Ignoring O3 feedback ! ⇠20% greater warming!

5. ENERGY BUDGET ANALYSIS

Figure 2 | Gregory regression plot for the net change in TOA radiative
fluxes. The � in the slopes (↵) are consistent with the �T (⇠20%).

The linear regression methodology for diagnosing climate forcing
and feedbacks established by Gregory et al.

6 uses a nearly linear
relationship between the change in the Top of the Atmosphere
(TOA) radiative imbalance N and global mean �Tsurface

N = F + ↵�Tsurface

with the parameters F=effective radiative forcing (Wm-2) and ↵
(Wm-2K-1), a measure for the linear superposition of all feedback
processes ! decomposition into shortwave (SW) and longwave
(LW) clear-sky (CS) and cloud radiative effect (CRE)

↵ = ↵CS + ↵CRE = ↵CS,SW + ↵CS,LW + ↵CRE,SW + ↵CRE,LW

! can be calculated from analogous regressions (Figures 3 & 5).

7. CLOUD CHANGES

Figure 5 | Gregory regression plot for the CRE-LW component.

I Cloud feedbacks = great uncertainty factor in global warming9.

I �↵CRE,LW between C1/C2 and B is of opposite sign to �↵CS,LW

! more positive feedback ! reduces the overall effect!

I ↵CRE,LW range of -0.3 to -0.1Wm-2K-1 only due to �O3 ! large com-
pared to -0.3 to 0.4Wm-2K-1 found in 15 state-of-the-art models10.

Figure 6 | � Annual, zonal mean frozen cloud fraction. Runs as labelled.
Non-significant � are crossed out (95% confidence level Student’s t-test).

I �↵CRE,LW can be explained by changes in upper tropospheric to
lower stratospheric ice clouds (greater LW than SW impact).

I Ice cloud formation = function(T, vertical T-gradient)11

! more ice clouds formed in B (additional cooling due to �O3).

8. CONCLUSIONS
I The large impact of changes in ozone on the here estimated ef-

fective climate sensitivity implies a need for model- and scenario-
specific treatment of ozone in global warming assessments.

I Future work has to assess this often neglected factor in a range
of state-of-the-art climate models.
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