

A Large Ozone-Circulation Feedback & Its Implications for Global Warming Assessments

Peer Nowack¹, Luke Abraham^{1,2}, Amanda Maycock¹, Peter Braesicke^{1,2,3} and John Pyle^{1,2}

¹Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, UK
²National Centre for Atmospheric Science, Department of Chemistry, University of Cambridge, UK
³Karlsruhe Institute of Technology, Department of Meteorology, Germany

1. BACKGROUND

Peer

pin35@cam.ac.uk

- Climate change is one of the greatest challenges that human civilisation will face in the 21st century
- \rightarrow realistic model projections are crucial for an informed climate policy.
- Climate models become more and more sophisticated
- \rightarrow by incorporating an \uparrow number of earth system processes
- \rightarrow due to \uparrow scientific understanding
- \rightarrow due to \uparrow model resolutions
- In spite of steadily ↑ computing power, many processes can still not be considered in climate change simulations.
- Stratospheric chemistry-climate interactions are a classic example of processes which are commonly <u>not</u> treated interactively, i.e. are not allowed to adapt consistently to the modelled changes of

2. MODEL CONFIGURATION

- HadGEM3 model (UMUKCA-AO configuration)^{1,2}.
 Atmosphere/land-surface = Unified Model @
- vn7.3 from the UK Met Office, resolution: 3.75° Ion x 2.5°Iat, 60 vert levs \leq 84 km.
- Chemistry scheme = <u>Chemistry</u> for the <u>Stratosphere</u> (CheS) developed in the UK Chemistry and Aerosol (UKCA) project³.
- Interactive **ocean** (NEMO⁴, $\leq 2^{\circ}$ resolution, 31 vert levs > -5km) and **sea-ice** (CICE⁵) models.

3. MODEL SIMULATIONS

the environment (to avoid high computational costs).

<u>Aim</u>: To isolate the impact of neglecting changes in stratospheric O_3 in a state-of-the-art climate model.

- ▶ **piControl**: [CO₂] = 285 ppmv.
- Abrupt $4xCO_2$: $[CO_2]$ abruptly \uparrow to 1140 ppmv.
- ▶ Interactive and non-interactive versions → Non-interactive runs using prescribed monthlymean climatologies of O_3 , CH_4 , N_2O .
- 3D/2D climatologies (X) = non-interactive runs using full 3D or zonal mean (2D) chemical climatologies from interactive run X.

Label	Description	Chemistry
Α	piControl	Interactive
A1	piControl	3D climatologies (A)
A2	piControl	2D climatologies (A)
В	Abrupt 4xCO ₂	Interactive
B1	Abrupt 4xCO ₂	3D climatologies (B)
B2	Abrupt $4xCO_2$	2D climatologies (B)
C1	Abrupt 4xCO ₂	3D climatologies (A)
C2	Abrupt $4xCO_2$	2D climatologies (A)

6. OZONE & WATER VAPOUR CHANGES

4. GLOBAL WARMING RESPONSE

7. CLOUD CHANGES

Figure 3 | Gregory regression plot for the CS-LW component.

Δα_{CS,LW} must be due to Δ in greenhouse gases other than CO₂.
 Under 4xCO₂: O₃ ↑ in the upper stratosphere (~30-50km) and ↓ in the lower tropical stratosphere (~20 km, 30N-30S, Figure 4a).
 Explanation for the O₃ ↑: T-dependency of O₃ depletion cycles

 $X + O_3 \rightarrow XO + O_2$ $XO + O \rightarrow X + O_2$

with the catalytic radical species X (e.g. NO, OH, CI), which slow down with stratospheric cooling under 4xCO₂ (Figure 4b)⁷.
 Explanation for the O₃ ↓: acceleration of the wave-driven stratospheric meridional overturning circulation under ↑ CO₂⁸.

Figure 1 | Temporal evolution of the annual and global mean surface temperature anomalies. Interactive chemistry runs are given in solid lines, dashed/ dotted lines show 3D/2D non-interactive experiments.

Ignoring O₃ feedback \rightarrow \sim 20% greater warming!

5. ENERGY BUDGET ANALYSIS

Figure 6 | \triangle **Annual, zonal mean frozen cloud fraction.** Runs as labelled. Non-significant \triangle are crossed out (95% confidence level Student's t-test).

- Δα_{CRE,LW} can be explained by changes in upper tropospheric to lower stratospheric ice clouds (greater LW than SW impact).
- ► Ice cloud formation = function(T, vertical T-gradient)¹¹ → more ice clouds formed in B (additional cooling due to ΔO_3).

▶ 30N-30S: $\Delta O_3 \rightarrow \Delta T$ due to SW/LW absorption/emission (Fig. 4c) \rightarrow important due to trop. to strat. air transport in this region.

Cooling effect of ΔO₃ in the lower strat. = regulating factor for entry of water vapour into the strat. (Clausius-Clapeyron, Figure 4c/4d).
 O₃ and water vapour = greenhouse gases → greenhouse effect ↓ → RF of -0.68Wm⁻² (O₃)/-0.78Wm⁻² (water vapour) → ΔCS-LW.

b Δ T by 4xCO₂, **c** Δ T by Δ O₃ and **d** Δ water vapour by Δ O₃.

 Δ Surface Temperature (°C)

Figure 2 | Gregory regression plot for the net change in TOA radiative fluxes. The Δ in the slopes (α) are consistent with the Δ T (\sim 20%).

The linear regression methodology for diagnosing climate forcing and feedbacks established by Gregory *et al.*⁶ uses a nearly linear relationship between the change in the Top of the Atmosphere (TOA) radiative imbalance *N* and global mean $\Delta T_{surface}$

 $\textit{\textit{N}}=\textit{\textit{F}}+lpha\Delta \mathsf{T}_{\mathsf{surface}}$

with the parameters F=effective radiative forcing (Wm⁻²) and α (Wm⁻²K⁻¹), a measure for the linear superposition of all feedback processes \rightarrow decomposition into shortwave (SW) and longwave (LW) clear-sky (CS) and cloud radiative effect (CRE)

 $\alpha = \alpha_{\rm CS} + \alpha_{\rm CRE} = \alpha_{\rm CS,SW} + \alpha_{\rm CS,LW} + \alpha_{\rm CRE,SW} + \alpha_{\rm CRE,LW}$

 \rightarrow can be calculated from analogous regressions (Figures 3 & 5).

8. CONCLUSIONS

The large impact of changes in ozone on the here estimated effective climate sensitivity implies a need for model- and scenario-specific treatment of ozone in global warming assessments.

Future work has to assess this often neglected factor in a range of state-of-the-art climate models.

This work has recently been published in *Nature Climate Change*, doi:10.1038/nclimate2451

Acknowledgements: For model development, we thank Jonathan Gregory (UK Met Office, University of Reading), Manoj Joshi (University of East Anglia) and Annette Osprey (University of Reading). We thank the European Research Council for funding through the ACCI project (project no. 267760). We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, which is a strategic partnership between the UK Met Office and the Natural Environment Research Council.

ropean Research Council ablished by the European Commission

1. Hewitt, H.T., et al. *GMD* 4, 223-253 (2011). 2. Morgenstern, O., et al. *GMD* 2, 43-57 (2009). 3. www.ukca.ac.uk 4. Madec, G. NEMO ocean engine (2012). 5. Hunke, E.C. and Lipscomb, W.H. CICE: the Los Alamos Sea Ice Model Documentation (2010). 6. Gregory, J.M., et al. *GRL* 31, L03205 (2004). 7. Haigh, J.D. and Pyle, J.A. Q. J. Roy. Meteor. Soc. 108, 551-574 (1982). 8. Butchart, N., et al. *J. Clim.* 23, 5349-5374 (2010). 9. Soden, B.J., et al. *GRL* 39, L09712 (2012). 11. Kuebbeler, M., et al. *GRL* 39, L23803 (2012). 12. Hunter, J.D. Matplotlib. Images in box 1 (Background) (order: top to bottom and then left to right): www.windows2universe.org/earth/Atmosphere, www.celebrating200years.noaa.gov/breakthroughs, www.figures.boundless.com, www.mcleanross.com. Image in box 2 (Model Configuration): www.pnl.gov/science/highlights.