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Iridium-catalysed borylation: Use of non-covalent interactions to control regioselectivity in catalytic reactions:
* A C-H activation, primarily controlled by steric hinderance — excellent for selective || Transition metal catalysis is a well established and powerful methodology for many synthetic transformations,
borylation of 1,3-disubstituted arenes but generally not mono or 1,2-disubstituted arenes however in some cases regioselectivity can be difficult to control.
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Scope - quaternary benzylamines: BPin
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