Generation and one-pot reactions of ketenes in microwave-assisted flow mode

B. Musio, F. Mariani, E. P. Śliwiński, M. A. Kabeshov, H. Odajima, S. V. Ley
University of Cambridge - Department of Chemistry
Lensfield Road CB2 1EW, Cambridge (UK)
bm450@cam.ac.uk

A new single-mode bench-top resonator was evaluated for the microwave-assisted in flow generation of primary ketenes by thermal decomposition of a-diazoketones at high temperature. A number of amides and β-lactams were obtained by in situ ketene generation and reaction with amines and imines in good to excellent yields.

In collaboration with:

Computational analysis at DFT level (ωB97xD/cc-PVTZ/ωB97xD/cc-PVDZ using the implicit Solvation Model based on Density) of the mechanism of [2+2] Staudinger ketene-imine cycloaddition at high temperature is reported. The relative rates of the key elementary steps were computed and an operational mechanism is suggested for the stereoselective formation of cis- and trans-lactams.

The preferential formation of trans-configured β-lactams is observed during the [2+2] Staudinger cycloaddition of a range of ketenes with different imines under controlled reaction conditions (165 °C, 20 bar).

A new web-based molecular viewer, which takes advantage from augmented reality (AR) technology, is also described for a faster interpretation of computed data.

Acknowledgements:
Aki Tomita
Professor J. M. Goodman