Measuring the membrane permeability induced by human cerebrospinal fluid

Suman De1, Patrick Flagmeier1, D. C. Wirthweinsohn1, Daniel Whiten1, Cecile Vincke2, Serge Muyltermans2, Steven F Lee1, Tuomas P.J. Knowles1, Sonia Gandhi3, Christopher M. Dobson1, David Kleneman1

1Department of Chemistry, University of Cambridge, Cambridge, UK. 2Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Belgium, 3Sobell Department of Motor Neurosciences and Movement Disorders, University College London, London, UK

Abstract
In order to quantify and characterize the potentially toxic aggregates associated with neurodegenerative disease, a high throughput assay based on measuring the extent of aggregate induced Ca²⁺ entry into individual vesicles has been developed. (1) This approach was implemented by tethering vesicles containing a Ca²⁺ sensitive fluorescent dye to a passivated surface and measuring changes in the fluorescence as a result of membrane disruption using total internal reflection microscopy. (2) Pico-molar concentrations of Aβ42 oligomers could be observed to induce Ca²⁺ influx, (3) which could be inhibited by the addition of a naturally occurring chaperone and a nanobody designed to bind to the Aβ peptide. The assay can be used to study aggregates from other proteins and to probe the effects of complex biofluids, such as cerebrospinal fluid, and thus has wide applicability. Potentially, our method enables the quantitative measurement of any biochemical process which involves membrane permeabilization and subsequent Ca²⁺ influx.

1. Methodology

2. Measurement of Ca²⁺ influx caused by solutions of Aβ42
2.1. Characteristic time-points of an Aβ42 aggregation reaction, such as the monomeric protein, the end of the lag phase and the plateau phase differ in their ability to permeate the membrane.

2.2. Ca²⁺ influx caused by solutions of Aβ42 can be detected in the range of pico-molar concentrations and in a highly reproducible manner.

2.3. Chaperones and nanobodies can be tested to whether they are able to counteract the Ca²⁺ influx caused by Aβ42 oligomers.

3. Human cerebrospinal fluid (CSF) of individual with AD and healthy individual, both can induce Ca²⁺ influx
3.1. We have found that CSF of individuals with AD and healthy controls can induce Ca²⁺ influx and Nb3 nanobody designed to bind to the Aβ peptide can partially inhibit this influx.

3.2. We probed Bapineuzumab, which is bivalent and binds soluble Aβ monomer and synthetic oligomers at the N terminus. We first measured that ~90 nM Bapineuzumab was required at half the Ca²⁺ influx caused by Aβ42 oligomers.

4. Conclusions
4.1. We have developed a method that enables the quantification of the ability of protein aggregation reactions to permeabilise lipid bilayers.
4.2. We show that Aβ42 oligomers are responsible for the lipid bilayer permeabilisation. The developed method is quantitative and reproducible. Antibodies and chaperones can be evaluated according to their ability to bind to and prevent the oligomer induced membrane permeation. We have found that CSF of individuals with AD and healthy controls can induce Ca²⁺ influx and the Nb3 and Bapineuzumab nanobody designed to bind to the Aβ peptide can partially inhibit this influx.
4.3. More than fifty protein misfolding diseases were identified to which our method may be applied. In addition the method may assist in the development of therapeutic agents.

Acknowledgements

Reference
1. Ultrasensitive Measurement of Ca²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angew Chem Int Ed Engl 2017, 56, 7750
2. Inhibiting the Ca²⁺ influx induced by human CSF; (under review)