

Bin Ouyang (bo237@cam.ac.uk), Matthew McLeod, Michelle Cain, John Pyle, Roderic Jones Centre for Atmospheric Science, Department of Chemistry, University of Cambridge

NO_{3y} chemical processes + cloud / ice HNO₃ $NO_2 + O_3 \rightarrow NO_3 \leftrightarrow N_2O_5$ (mainly) ×VOCS $HNO_3 + CINO_2$ Products $NO_2 + RO/OH$

Measurement techniques:

 $NO_2/NO_3/N_2O_5$: broadband cavity enhanced absorption spectroscopy (Cambridge) Aerosol composition / size distribution: aerosol mass spectrometer / SMPS (Manchester);

HO₂: laser induced fluorescence (**Leeds**); Aerosol scattering: nephelomter (**FAAM**); VOCs: gas chromatography + flame ionization detector, (**York**);

Analysis metrics based on steady-state approximation:

 $(\tau_{\text{NO}_3})^{-1} = \frac{k_1[\text{NO}_2][\text{O}_3]}{[\text{NO}_3]} = k_x + k_y K_{\text{eq}}[\text{NO}_2]$ $(\tau_{\text{sum}})^{-1} = \frac{k_1[\text{NO}_2][\text{O}_3]}{([\text{NO}_3] + [\text{N}_2\text{O}_5])} = \frac{k_x}{1 + K_{\text{eq}}[\text{NO}_2]} + \frac{k_y K_{\text{eq}}[\text{NO}_2]}{1 + K_{\text{eq}}[\text{NO}_2]}$

 k_1 : reaction rate constant between NO₂ and O₃; k_x : loss rate of NO₃ due to gas-phase NO₃ reactions;

 $k_{\rm v}$: loss rate of N₂O₅ due to heterogeneous reactive uptake;

 \succ (τ_{sum})⁻¹ is the weighted average of the loss rates of NO₃ and N₂O₅ – its magnitude is inversely proportionally to the lifetime of NO_{3v} , and dictates the time required for NO_{3v} to reach steady-state;

 \succ (τ_{sum})⁻¹ controlled by NO₃ loss when K_{eq} [NO₂] is small, and by N₂O₅ loss when $K_{eq}[NO_2]$ is large, i.e. shifts depending on the N₂O₅ / NO₃ partitioning.

Flight No. B537 – Jul 20, 2010, NO₃-dominated loss (via reaction with anthropogenic alkenes and HO_2)

Back trajectory and synoptic wind suggest air mass originated from the European continent;

>High aerosol organics in this aged plume outflow (suggested by high CO/NO_2), high T $(NO_3 \leftrightarrow N_2O_5 \text{ equilibrium favoured } NO_3)$ and relatively low RH all disfavour N₂O₅ reactive uptake to aerosol particles;

Flight No. B570 – Jan 23, 2011, N_2O_5 -dominated loss (via uptake to internally-mixed ambient aerosols)

 \succ The strongly correlated profile as well as large $K_{eq}[NO_2]$ value (>10, winter) for the entire period suggest that the heterogeneous reactive uptake of N₂O₅ by aerosol particles is the dominant NO_{3v} loss pathway

 \succ Lack of RO₂ contribution likely due to the sum of measurement uncertainties ($\sim 40\%$);

 \succ Very efficient NO₂ recycling due to the regeneration of NO₂ from NO_3 via $NO_3 + HO_2/RO_2 \rightarrow NO_2$ and $NO_3 + alkene$ reactions (which for short-chain anthropogenic usually have small organic nitrate yield);

 \succ Transformation of NO₂ \rightarrow NO₃⁻ / HNO₃ (i.e. a more permanent) reservoir of NO_x very slow and predominantly relied on NO₂ + nocturnal OH (and potentially also partially on NO_3 + HCHO), due to the suppressed N_2O_5 heterogeneous uptake pathway;

for the period shown;

Flight No. B569 – Jan 20, 2011, complicated N_2O_5 uptake behaviour (the important role of aerosol organics)

 \succ Period **a** and **b**: negligible nighttime N₂O₅ loss and complete inhibition of N_2O_5 uptake to aerosol particles, as suggested by the nearly equal amount of observed sum of NO₃ and N₂O₅ and that could be formed since sunset; the large change in organics mass fraction (~0.3 to ~0.5 from period a to d) does not seem to matter;

scenario when urban transported to > 3 km, was then removed by

 \succ Uptake of N₂O₅ to cloud droplets and to falling ice were frequently observed (even though days with forecast precipitation were deliberately avoided in flight planning) and constitute a significant loss pathways of N_2O_5 around the UK;

 \succ Period *c*: Significant N₂O₅ loss observed, coincident with peak in aerosol sulphate – indicative of externally mixed sulphate and organics aerosols, or inefficient inhibition on N_2O_5 uptake by organics due to the relatively low organics mass fraction (~ 0.2)?

 \succ Period **d**: Significant N₂O₅ loss observed, coincident with sharp rise in RH; possibly due to disappearance of segregation of aerosol inorganic and organics (disappearance of coating), but a more likely cause is the "earlier" scavenging of N₂O₅ by precipitation (rain or ice);/

Acknowledgment: This study was funded by the National Environment Research Council (Grant ref. NE/F005466/1).