
Michal Leskes(1), Amy J. Moore(1), Gillian R. Goward(2) and Clare P. Grey(1) 
(1) Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK 

(2) Department of Chemistry, McMaster University, 1280 Main St. W. Hamilton, Ontario, Canada , L8S 4M1 

The Lithium-Oxygen battery 
The lithium-oxygen battery is, in principle, a promising candidate for use as an energy 
storage system. Theoretically, it can store 3,505Whkg-1 (approaching an order of 
magnitude more than a conventional lithium ion battery) based on the reaction (in a non-
aqueous electrolyte) of Li and O2 to form lithium peroxide (Li2O2) and including the 
weight of the reactants1.  
 
 
 
 
 
 
 
 
 
 
 
 
In practice the development of the battery is still at initial stages with operating cells 
falling short of their promising potential2. Among the challenges to be addressed are the 
identification of stable electrolyte systems, inert and porous cathode materials and 
efficient catalytic species. These can only be achieved with a careful analysis of the 
electrochemical products formed during the operation of the cell. Here we employ a 
multi-nuclear solid state NMR spectroscopy which enables us to monitor the evolution of 
these products during electrochemical cycling and gain insight into processes affecting 
capacity fading.  
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Characterization by Solid state NMR 

We have recently demonstrated how solid state NMR (ssNMR) spectroscopy, in 
particular of the 17O nucleus, is a powerful tool in the investigation of the lithium-air 
battery as it allows a clear distinction between the main products formed in the cell – 
lithium peroxide and lithium carbonate3.  
 

vacuum  
line 

Li-O2 
cell 

17O enriched O2 gas  

the cell is evacuated  
to ~0.8bar and cooled 
to~5C. Then filled 
back to ~1bar with 
enriched gas 

Cell design and electrochemistry 

O2 in 
O2 out 

Bottom case 

spring 
current collector 
lithium 

separator +electrolyte 

Stainless steel mesh 

Top case (with holes) 

cathode (40% C) 

coin cell 

- 
+ 

cycling 

Battery stopped at various stages, 
cathode extracted, washed, dried 
and packed in the NMR rotor 

The advantages of solid state NMR are: 
 
9 Allows  a clear  distinction between 
     the main discharge products. 
 
9 Detects products formed in the bulk  
     of the cathode as well as on the  
     surface. 
 
9 Detects both crystalline and amorphous  
     materials. 
 
9 17O (I=5/2) quadrupole coupling constant, Cq, is a sensitive probe to its chemical 

environment and can be used to uniquely identify the peroxide species. 
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Library of possible electrochemical products 
Detecting the 17O spectral signature of various lithium-
oxygen compounds at high magnetic fields allows us to 
identify them when they are formed in the battery . 
 

Fitting the second-order 
quadrupole  line  shape we can 
determine the NMR 
parameters  and simulate 
the spectra at the same 
conditions (magnetic field and 
magic angle spinning 
frequency). The various 
species are clearly 
distinguishable by their 17O 
spectra. 
 

17O enrichment of the products 
Cycling the battery with 17O enriched oxygen atmosphere 
results in isotope enrichment of the products which can 
be identified and monitored during the cycle. 

1H ssNMR of cycled cathodes 

1H spectra are used to monitor the evolution of lithium 
hydroxide and formate.   
1H-6Li 2D correlations  aid in filtering the pvdf signal and 
identifying a fragment of the DME formed at initial discharge. 

13C ssNMR of cycled isotope enriched cathodes 

The cathode reacts with lithium 
peroxide upon charging forming 
lithium carbonate. From the 
second cycle carbonate 
accumulates on the surface. 

Conclusions 
• Lithium peroxide is the main discharge product  in the initial cycle in DME accompanied by non-negligible electrolyte decomposition forming lithium 

hydroxide, carbonate and formate. 
• Upon charge significant amounts of lithium peroxide decompose below 4.5V. 
• While the hydroxide decomposes upon charging, formate accumulates on the cathode surface. 
• The carbon cathode, though inert during the first discharge, is unstable in the presence of peroxide at higher voltages forming a layer of carbonate that 

blocks the surface. 
• Limiting the capacity to 1000mAh/g results in similar distribution of products with a slight decrease in the charge potential, possibly due to a thinner 

insulating layer of products. 
• We have demonstrated that a multinuclear solid state NMR approach is  a powerful method for directly detecting product formation and decomposition 

within the cathode, a necessary step in the evaluation of new electrolytes, catalysts and cathode materials for the development of a viable lithium-air 
battery. 
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17O NMR of cycled cathodes 

Taking into account the 
relaxation of the different 
species in order to get more 
quantitative analysis 
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