Numerical evidence for thermally induced
monopoles
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MOTIVATION THERMALLY INDUCED ALIGNMENT OF DIPOLES
Bresme and co-workers demonstrated numerti- A 10 l \ | /
cally that certain polar liquids, such as water, align We performed equilibrium and ! R \\‘.: | Q’// o -
in response to an imposed temperature gradient, nonequilibrium molecular dynamics 5L / 31 D 1.00
resulting in a thermally induced electric field simulations of a heated and a cooled o D
colloidal particle immersed into an s ol o o115
Erp(r) = StpVT(1), off-center Stockmayer fluid. " o o
Wher§ T (r) is the temperature and Stp the thermo- To maintain a steady-state, we added -5 o f \ \\
polarization coefficient. . . \ / | N
energy to the hot particle and with- ol \\ - i .l ! - -

Frenkel recently noticed that this effect leads to a
non-vanishing field flux through a surface enclosing
the heat source/sink that generates the temperature
gradient. In other words, the heat source/sink carries
an effective charge qrp:

#ETP(T) .dS = QTP.
€0

Consequently, a pair of heated or cooled colloidal
particles immersed 1n such a solvent 1s expected to
attract each other.

We show using molecular simulations that a
pair of heated/cooled colloidal particles in a dipo-
lar solvent behaves like oppositely charged electric
Or magnetic monopoles.

SOLVENT MODEL
We employed a modified Stockmayer fluid,

drew 1t from the cold one continuously
using the eHEX algorithm. Cylindri-
cal averages for the temperature and
average dipole orientations are shown
in Fig. 2.

The thermally induced charge 1s re-
lated to the temperature difference be-
tween the particle surface at a distance
R from the center and the bulk:

grp = —4megStp(Tr — Too ) RR.

Furthermore, solvent dipoles align
with the superimposed electric field
lines generated by two virtual point
charges +qrp.

Figure 2: Cylindrically averaged temperature profile (A) and
dipole orientations (B) generated by a pair of heated/cooled col-
loidal particles with symmetry axis z* and perpendicular axis s*
in a fully periodic system.

THERMALLY INDUCED MONOPOLES

consisting of particles with a point dipole (col- A
ored arrows) and a Lennard-Jones center dis-
placed along the direction of the dipole mo- The analytical solution for the electric
ment. The displacement is controlled by a param- field generated by two charged spheri-
eter o and a non-zero value is necessary for the cal shells (Fig. 3A) 1s given by
molecules to undergo thermo-molecular orientation. "
(£ p(2))
E
—1 if |z| > z. + Rrp,
+1 if |z| < z. — Ryp, -
(Z — Zh)/RTP if |z — Zh| S RTP9
(z. — z)/Rtp otherwise, B
Figure 1: Two interacting solvent particles with
a homogeneous mass distribution over a ball of where 2. = FL/4 denote the
radius R centered around the dipole. locations of the hot and cold col-
loidal particle, respectively, L 1s
the box length i1n the z-direction,
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We can link theory and simulation by

Fig. 3C shows that the two colloidal
particles behave as if they carry the
Coulomb charges +q1p ~ F0.134.

—— Theory

Figure 3: Illustration of the simulation setup (A and B) and 1n-
duced electric field averaged over slabs perpendicular to the sym-

metry axis (C).




