Insights into Collagen Structure from ¹⁵N-labelled Synthetic Model Peptides and Mouse Bone

<u>leva Goldberga</u>,¹ David G. Reid,¹ Wing Ying Chow,² H. Oschkinat,² Melinda J. Duer¹

¹ Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom (<u>ig326@cam.ac.uk</u>) ² Leibniz-Institut für Molekulare Pharmakologie, Campus Berlin-Buch, Robert-Roessle-Str.10, Berlin, Germany

Introduction

- This work focuses on ¹⁵N assignment in synthetic collagen model peptides and ¹⁵N-labelled mouse bone.
- ¹⁵N relaxation is a sensitive probe of collagen backbone dynamics.
- Interpretation is assisted by selectively labelled amino acids in model collagen peptides which allow the sequence dependence and neighbour effects of ¹⁵N relaxation to be characterized.
- The first part of the poster presents ¹⁵N T₁'s of model peptides and mouse bone; the second focuses on as yet unassigned ¹⁵N resonances of bone.

R, Arg

A, Ala

48.3

14.4

19.9

DB265

12.5

19.9

26.4

DB289

19.4

7.9

澎

₹,

Relaxation Results

Bone Material

 Graph represents relaxation of the following model peptides with labelling highlighted (A-Ala, G-Glycine, P-Proline, O-Hydroxyproline, R-Arginine):

Model Samples

	DB256 DB258	(GPO) ₅ GPO(GPO) ₅ -NH ₂ (GPO) ₅ GPP(GPO) ₅ -NH ₂
	DB283	(GPO) ₅ APPGPO(GPO) ₄ -NH ₂
	DB284	(GPO) ₅ GPPAPO(GPO) ₄ -NH ₂
	DB265	(GPO) ₅ GPGPO(GPO) ₄ -NH ₂
	DB289	(GPO) ₅ GFOGERGPO(GPO) ₄ -NH ₂
1.6		
		P, Pro
		G, Gly

65.3

37.3

DB284

23.5

DB283

37.3 37.3

21.5

DB258

120

90

60

30

37.3

DB256

S

1

111.6

11:

 Relaxation is affected not only by neighbouring amino acids within the chain but also by adjacent chains in the triple-helix structure:

- Schematic representation of chain stagger in (GPO)₅GPO(GPO)₅ and (GPO)₅GPP(GPO)₅ peptides sequence above (cross sections highlighted)
- Abundant GPO triplets provide stability to collagen triple-helix
- Ala and other substitutions 'loosen' the collagen triple helix
- Relaxation values of bone material are in good agreement with model samples

• Graphic representation of the relaxation results of bone material using Inverse Laplace transform in MatLab:

Less Abundant Nitrogen Species in the Bone Material: What are the Unidentified Signals?

1D ¹⁵N NMR of Labelled Bone*:

Possible Glycosylation, Enzymatic and Non-Enzymatic Cross-Linking Species² with ¹³C predictions:

Enzymatic Cross-Linking Products

 Immature cross-links: Formed between two lysine and/or hydroxylysine side chains:

• Mature cross-links: Formed between three lysine and/or hydroxylysine side chains:

Non-Enzymatic Glycation Products

• The initial glycation reaction with glucose:

• Some advanced glycation endproducts (AGEs). Most involve lysines:

* Spectra were obtained during *iNEXT* visit in Berlin
 * Arg-Arginine; Gly-Glycne; Hyl-Hydroxylysine; Lys-Lysine; Pro-Proline

• These species are formed from hydroxylysine residues reacting with galactose

Future Work

- MD simulations to help understand collagen dynamics
- Other nuclei relaxation: ²H and ¹³C
- DNP NMR and model compound synthesis to help
 identify unknowns

[1] Shoulders, R. Raines, Collagen structure and stability. Annu. Rev. Biochem. 78, 929-958 (2009)
[2] Bailey, A. J. et al. Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106, 1–56 (1998)

