Exploring the Effects of Collagen Glycation

<u>Rui Li¹</u>, David Reid¹, Rakesh Rajan¹, Wai Ching Wong¹, Karin Muller¹, Wing Ying Chow², Hartmut Oschkinat², Melinda Duer¹

¹Department of Chemistry, University of Cambridge, UK ² Leibniz-Institue for Molecular Pharmacology (FMP), Berlin, Germany

INTRODUCTION

- Diabetes and ageing both lead to similar symptoms, including multiple essential organ failure. Collagen glycation is widely believed to play an important role in this process.
- Extracellular matrix (ECM), a collagen assembled scaffold, as a long lived structural component with slow turn over rate is most likely to be affected by glycation, causing detrimental effects.
- Glycation is a non-enzymatic reaction between amino groups in proteins and aldehyde groups in sugars, causing amino acid sidechain modifications and forming intermolecular cross links. The reaction scheme and a few typical glycation products are shown below.

UNIVERSITY OF CAMBRIDGE

METHODS & OBJECTIVES

- Use mammalian cell culture method to produce Lys labelled ECM
- Incubate the ECM with reducing sugar
- Use multiple analytical methods, including solidstate NMR and SEM to examine the structural effects of glycation reactions on ECM
- Understand the chemistry behind ageing, diabetes and its complications on a molecular basis

ĊH₂OH ĊH₂OH ĊH₂OH . Lys

RESULTS

Glycation Reaction between Extracellular Matrix and Ribose

Data included in this section are acquired from U-¹³C, ¹⁵N-Lys labelled ECM. Ribose involved in the experiment is also ¹³C-enriched.

¹³C T₁ distribution contour plot

¹³C T₁ distribution contour plot

Figure 2 illustrates the dynamic changes before (left) and after (right) glycation reaction. Inverse Laplace Transform (ILT) separates the T_1 relaxation decay of different components and displays these as contour plots.

A Diabetic Extracellular Matrix Model

Figure 5 shows the ¹³C-¹³C DARR spectrum of a GlyLysGlc labelled ECM. Possible assignments are given below. This suggests that there are endogenous precursors of glycating sugars such as poly-(ADP-ribose) which can be converted to glycating sugars, ribose-5-phosphate and ribose. ~102 ppm in Gal

Figure 3 compares the SEM images before (left) and after (right) the glycation reaction.

FUTURE WORK

- Confirm as many assignments as possible based on current data
- Carry out 2D ¹³C-¹⁵N correlation experiments, helping assignments of more glycation products and ¹⁵N relaxation experiments, studying the backbone dynamics change due to glycation
- Use paramagnetic probe to test the location of the modifications
- Modify the reaction condition and push the experiment towards the formation of advanced glycation end-products
- Link abnormal high sugar concentration to oxidative stress and examine the effects and products of oxidative stress

REFERENCES

1. Bonnans C. et al. Nat. Rev. Mol. Cell Biol. 15, 786-801 (2014) 2. Singh R. et al. Diabetologia 44, 129-146 (2001) 3. Bailey J. et al. Mech. Ageing Dev. 122, 735-755 (2001)