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/I\/Iotivations x

Organic additives are widely used to manipulate the surface properties of a
material. Many of these scenarios work under dynamic conditions with a flowing
liquid.
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Anti-corrosion additives Lubrication additives

But how do these adsorbed layers change under “working” conditions?
= Are they worn away? Do they continue to protect the surface?

Here we show changes in the adsorption of the j_/—/
surfactant sodium bis(2-ethylhexyl) sulfosuccinate \_\_& .

(AOT) on alumina under applied shear with )_(—(
neutron reflectometry (NR). s o/s\f@ . -

AOT adsorbs on Al,03; as a bilayer, with multi-lamellae at higher concentrations.
The lamellae allow the molecular order to be tested under shear at different length
-scales :
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/I\/Iethods

Combined neutron reflectometry (NR) and

rheometry are used to study the changes in

_ e
adsorption on a molecular scale. Steady and /M\‘

dynamic shears were applied; shear rates up to Neutron
1 . -1 beam
500s ™ and frequencies up to 100s ™ at 500%
Strain Ti cone (1.0°,0.097mm) e \ X 2
. Rheometer schematic Photo of set-up of rheometer on FIGARO, ILL.

NR provides structural information perpendicular to the surface. These layers give Kiessig interference fringes, as well as Bragg peaks
from multi-lamellae.

Layers of different SLD (neutron refractive index) - Kiessig fringes

Repeating layers of same SLD (neutron refractive index) - Bragg peaks
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Simulation of reflectivity showing Kiessig and Bragg interference peaks.
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Fitting a Gaussian to the Bragg peaks provides information on changes in longer- T Height
range order:

Position - multi-layer separation

FWHM (B) - no. of ordered layers (n), where , _ K4 :
fcosf [T Area

k Example Bragg peak fitting.

L. FWHM

Results - Low Concentration

dynamic shear.
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Reflectivity profile of 2.5mM AQOT on Al,03 under increasing Example Q,-Q, p

steady shear (from 0.5 to 500s™).

At low concentrations (2.5 mM) AOT adsorbs as a bilayer on the Al,O3 surface, with no change under the applied steady or At high concentrations (2 wt% / 45 mM) AOT adsorbs as multi-lamellae, giving rise to
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/Results - High Concentration \

Bragg peaks in the reflectivity curve. This longer range order is lost under applied shear.
The surface bilayer always remains.

Steady shear: peaks lost between 1 and 5s, and lost quickly (<30mins).

»

0.0004 ; Increasing shear ; 14
0.00035 ! ! : : : : 12
—— Static 1 \ \ \ \ \ \ g
102 - 5minAs@55_1_1 - 0.0003 N oW ¥ o k 30¢ '9'( : ! 10 o)
10mins @ 5s ] : : : : >§4I : LS
—— 15mins @ 58 ' E E 0.00025 ! ! : : | ! 8 E
] £ 0.0002 : : : : X : =
| © 1 1 ] | | 1 6 E

[} 1 1 1 1 1 1
B Ly - 0.00015 : : : : : : ®
10 8: N 4 ‘\‘\ E 0 0001 1 1 1 1 1 : 4 E
: e A ] ' < Pelak ared ! ! RN 3
0.00 0.000 0.001 0.002 4 X 75 ] 0.00005 I I : : : : 2 8
- - .-V AN ! e ) 7 : Ng of layérs ' ' ' .
lot from 2D detector of FIGARO, ILL. o %‘f&ﬁ’@ 0 : : : : TRVl 0
10* 2 L L 1 L L T — 1/ 0 50 100 150 200
4 0.1 Time / mins
q, (at q,=0.0) / A

Example reflectivity profile of 45 mM AOT on Al,O; under Variation in Bragg peak area and calculated number of

increasing shear rate. multi-lamellae with increasing applied steady shear.
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and 5s™ R.x750

We have been awarded additional NR beam-time to:
a) address geometry dependence

b) complete conc. AOT dependence

enabling the NR work to be carried out.
\c) explore additional surfactant systems e.g. multi-lamellae vesicle formation under shear e VGSW = PS RC

s this loss of order due to the system or the experimental set-up? PO . Increasing shear , ., 140
_ _ . » _ . - - _ Dynamic shear: onset of change is seen 0.00035 ! 5 ; wib, boil 1200
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For the steady shear rates between which change was observed in this set-up: 1s~ R.=150 (Lingwood,, J. Fluid Mech,, 1996, 314, 373-405). 0 | | o0

. need to determine whether observed changes are due to the system or geometry

Dashed line=change in shear conditions
Each data point is a separate NR run
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/4{ As above, but under increasing oscillatory shear.
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