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Quantum Transition-State Theory?

The classical flux-side time-correlation function
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possesses a non-zero short-time limit, namely classical TST.
The Miller-Schwarz-Tromp (MST) quantum flux-side time-correlation
function
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vanishes in the t — 0, limit.
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Figure 1: Classical flux-side time-correlation Figure 2: Quantum flux-side time-correlation
function function

Alignment of dividing surfaces: non-zero QTST
CM(t — 0,) vanishes because its dividing surfaces are in different places

in path-integral space (Figure 3), but by moving the flux dividing surface
they can be aligned:

t—>0_|_

S e

Figure 3: MST form: different dividing

surfaces.

Figure 4: New Form: same dividing surface.

The equation for the new form (Fig. 4) is

cH(t) / dq / dz / dA h(z
(q+ A /2] <z|e-'Ht/ﬁ|q A/2),
and in the short-time I|m|t this reduces to Wigner TST:
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Figure 6: 333K, spurious half-instantons

Figure 5: 1000K, good quantum TST
cause a negative quantum TST!

Wigner TST produces poor results at low temperatures, as demonstrated
by the negative result in Figure 6
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Positive-definite Boltzmann Statistics: RPMD-TST

Positive-definite statistics are obtained upon polymerizing Eq. (3);

[N] /dq/dA/dz Flf(q)]h[f(2)]

X H (qi-1 — §Ai—1|e BNH\Qi %Ai><Qi + %A,\e’Ht/h\z;>
=1
x (zile Mt/ g — 3A)) (5)

where f(q) is a dividing surface in path-integral space, and F[f(q)] is the
‘ring polymer flux operator'
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which measures the flux normal to the dividing surface f(q).
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Figure 7: Polymerising Eq. (3) to form Eq. (5) and taking the short-time limit,
illustrated for N = 3.

The large-N, short-time limit of equation (5) is positive-definite and
identical to RPMD-TST:
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where 5(q, p) represents the ring-polymer flux perpendicular to f(q) and
Hyn(q, p) is the N-bead ring-polymer Hamiltonian.

Numerical results for the symmetric Eckart barrier
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Summary

» A true (t — 0,) Quantum Transition-State Theory (QTST) was thought
not to exist, i.e. there was no quantum flux-side time-correlation function
with a non-zero short-time limit.

» Such correlation functions do exist, and can be formed when the flux and
side dividing surfaces are in the same location in path-integral space [1].

» Only one known QTST produces positive-definite quantum statistics and
this is identical to RPMD-TST [3].

»QTST (= RPMD-TST) gives the exact quantum rate in the absence of

recrossing [2].




