I have recently moved to the National Institutes of Health; please see my new website here:
http://www2.niddk.nih.gov/NIDDKLabs/IntramuralFaculty/BestRobert.htm
My research is concerned with the dynamics of large biomolecules, in particular with protein dynamics, folding and binding. Through the impressive achievements of structural biology, much has been learnt about the function of proteins by solving the structures of their stable states (e.g. active, inactive conformations). Studying the dynamics and mechanism of transitions between these states is still a major challenge for both experiment and simulation, yet is equally important for understanding function. I develop novel methods for studying macromolecular dynamics and apply them to biologically interesting systems, using a combination of simulation and theory appropriate for addressing each question.

For example, we have devised algorithms for enhanced sampling of the “rare events” in simulations, which constitute the reactive portions of the trajectory; by designing good “reaction coordinates”, we are able to describe the progress of the reaction (mechanism) quantitatively. To study larger systems or longer time scales, we are developing coarse-grained models with reduced complexity. We have also devised improvements to all-atom simulation models, towards the goal of more accurately simulating protein folding and the mechanism of coupled folding and binding. We work closely with experimental collaborators, either by using theory to help in interpreting experiments or experimental data to refine simulation methodology. We have used coarse-grained models to help interpret single molecule protein folding experiments based on fluorescence resonance energy transfer or atomic force microscopy and all-atom models to interpret NMR dynamics experiments.
Selected Publications
Crosstalk between the Protein Surface and Hydrophobic Core in a Core-swapped Fibronectin Type III Domain
KS Billings, RB Best, TJ Rutherford, J Clarke - Journal of Molecular Biology (
2008)
375, 560
(DOI:
10.1016/j.jmb.2007.10.056)
Universal features of protein folding thermodynamics and kinetics under confinement
J Mittal, RB Best - AIChE Annual Meeting, Conference Proceedings (2008)
Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules
RB Best, E Paci, G Hummer, OK Dudko - Journal of Physical Chemistry B (2008) 112, 5968
Binding-induced folding of a natively unstructured transcription factor
AG Turjanski, JS Gutkind, RB Best, G Hummer - PLoS Computational Biology (2008) 4
Effect of flexibility and cis residues in single-molecule FRET studies of polyproline
RB Best, KA Merchant, IV Gopich, B Schuler, A Bax, WA Eaton - Proceedings of the National Academy of Sciences of the United States of America (
2007)
104, 18964
(DOI:
10.1073/pnas.0709567104)
Effect of flexibility and cis residues in single-molecule FRET studies of polyproline
RB Best, KA Merchant, IV Gopich, B Schuler, A Bax, WA Eaton - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2007) 104, 19064
Designing an extracellular matrix protein with enhanced mechanical stability
SP Ng, KS Billings, T Ohashi, MD Allen, RB Best, LG Randles, HP Erickson, J Clarke - Proceedings of the National Academy of Sciences of the United States of America (
2007)
104, 9633
(DOI:
10.1073/pnas.0609901104)
Characterization of the residual structure in the unfolded state of the Delta 131 Delta fragment of staphylococcal nuclease
CJ Francis, K Lindorff-Larsen, RB Best, M Vendruscolo - Proteins (
2006)
65, 145
(DOI:
10.1002/prot.21077)
Relation between native ensembles and experimental structures of proteins.
RB Best, K Lindorff-Larsen, MA DePristo, M Vendruscolo - Proc Natl Acad Sci U S A (
2006)
103, 10901
(DOI:
10.1073/pnas.0511156103)
Relation between native ensembles and experimental structures of proteins
RB Best, K Lindorff-Larsen, MA DePristo, M Vendruscolo - Proceedings of the National Academy of Sciences of the United States of America (
2006)
103, 10901
(DOI:
10.1073/pna.0511156103)
Funding
Further Funding Information: