skip to content

Dr Mark Andrew Miller

Portrait of mam1000

My research employs specially tailored simulation techniques to investigate the structure, dynamics and thermodynamics of molecular, colloidal and biological systems. A key element in my approach is the use of coarse-grained models that provide insight into a problem by being as simple as possible while retaining the essential chemistry and physics

Colloids consist of nanometre scale particles of one phase dispersed in another. Everyday examples include milk (an emulsion of fat globules in water) and paint (a suspension of solid pigment particles in a liquid). The shapes of and interactions between colloidal particles can be finely controlled in the laboratory, and colloids can therefore be considered as "designer atoms." This level of control leads to the possibility of designing new materials with interesting and useful properties. Computer simulation, in conjunction with the theory of statistical mechanics, plays an important role in making the connection between the interactions of individual particles and their collective behaviour.

A major goal in this sort of study is to discover how to design particles that will self-assemble into target structures without detailed intervention. Nature provides many examples of efficient self-assembly such as the cooperative folding and assembly of proteins into highly organised complexes, and the assembly of the protein shells (capsids) that encapsulate the genetic material of viruses. Understanding these processes is of interest both for the fundamental science and for potential applications in technology and medicine.

A transient gel of dipolar particles. The particles are coloured according to which cluster they belong to and the red cluster spans the box or "percolates." The particles are only physically bonded and the chains can rearrange, but at low temperature, the network becomes long-lived and the motion of the constituent particles becomes restricted.

Selected Publications


  • Crystallization of deformable spherical colloids, V. M. O. Batista and M. A. Miller, Phys. Rev. Lett. 105 088305 (2010)
  • Dynamical arrest in low density dipolar colloidal gels, M.A. Miller, R. Blaak, C. N. Lumb and J.- P. Hansen, J. Chem. Phys. 130 (2009) 114507
  • Depletion-induced percolation in networks of nanorods, T. Schilling, S. Jungblut and M.A. Miller, Phys. Rev. Lett. 98 (2007) 108303
  • Competition of percolation and phase separation in a fluid of adhesive hard spheres, M.A. Miller and D. Frenkel, Phys. Rev. Lett. 90 (2003) 135702
  • Archetypal energy landscapes, D.J. Wales, M.A. Miller and T.R. Walsh, Nature 394 (1998) 758



Structure and stability of charged clusters.
MA Miller, DA Bonhommeau, CJ Heard, Y Shin, R Spezia, MP Gaigeot – Journal of Physics: Condensed Matter (2012) 24, 284130
Controlling the Folding and Substrate-Binding of Proteins Using Polymer Brushes
BM Rubenstein, I Coluzza, MA Miller – Phys Rev Lett (2012) 108, 208104
Tunneling conductivity in composites of attractive colloids.
B Nigro, C Grimaldi, MA Miller, P Ryser, T Schilling – The Journal of chemical physics (2012) 136, 164903
Density Functional Theory for Baxter's Sticky Hard Spheres in Confinement
H Hansen-Goos, MA Miller, JS Wettlaufer – Phys Rev Lett (2012) 108, 047801
Crystallization of deformable spherical colloids.
VM Batista, MA Miller – Phys Rev Lett (2010) 105, 088305
Networks of nanotubes
MA Miller, T Schilling, S Jungblut – (2010) 4, 23
Topological characteristics of model gels.
MA Miller, R Blaak, JP Hansen – Journal of Physics: Condensed Matter (2010) 22, 104109
On structural correlations in the percolation of hard-core particles.
MA Miller – The Journal of chemical physics (2009) 131, 066101
Dynamical arrest in low density dipolar colloidal gels.
MA Miller, R Blaak, CN Lumb, JP Hansen – The Journal of chemical physics (2009) 130, 114507
The vanishing limit of the square-well fluid: The adhesive hard-sphere model as a reference system
J Largo, MA Miller, F Sciortino – The Journal of chemical physics (2008) 128, 134513
  • 1 of 4
  • >

Research Group

Telephone number

01223 763874 (shared)

Email address