Structural effects in lithium cuprate chemistry: the elucidation of reactive pentametal complexes

Philip J. Harford, Andrew J. Peel, Joseph P. Taylor, Andrew E. H. Wheatley
Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW (UK)
aehw2@cam.ac.uk

Introduction
Since 1999, so-called synergic bases have gained traction for their utility in selective organic synthesis. [1] Alkali metal aluminates and zinicates have enabled advances in the elaboration of aromatics and attention has now switched to lithium cuprate bases and Directed ortho cupration (DoC) as a precursor to commercially attractive noble catalyst-free C–C bond formation (e.g., below). [2]

Extending principles: Lipshutz-type cuprates

The bridging activity of cyanide has been replicated using copper(I) halides to yield what can be regarded as ‘Lipshutz-type’ cuprates. These establish the generality of the $\text{R}_2\text{Cu}(\text{CN})\text{Li}_2$ ($X = \text{CN}$, halide) motif. [3,4]

The advent of cuprate adducts

To probe the role of steric effects in controlling amidocuprate reactivity we have replaced TMP with less bulky DMP. DMPH also retains a fraction of the cost of TPMH. In the case of DMPH, reaction with copper(I) halides has yielded an unprecedented series of complexes. [5]

Acknowledgements
The authors thank the EPSRC (EP/J003080/1) and the GB Sasakawa Foundation for support. Calculations used the RICC facility at RIKEN. Thanks go also to Prof. P. R. Raithby (Bath), Prof. M. Uchiyama and Dr. Shinsuke Komagawa (Tokyo).

Reaction pathway and cuprate interconversion

Our own prior art has shown that Gilman cuprates show inferior DoC activity when compared to Lipshutz-type. [1] However, by DFT analysis a Gilman monomer accessed from a Lipshutz precursor emerges as the reactive base; [5] elimination of solvated LiCN from Lipshutz complex ($\text{Me}_2\text{N}_2\text{Cu}(\text{CN})\text{Li}_2\text{S}$) yields a Gilman-containing complex (IM_1L_2) that reveals a reduced +14.9 kcal/mol barrier to DoC.

Like other cuprates, bis(amido)cuprate types are differentiated by the inclusion or not of LiX ($X = \text{inorganic anion};$ above). Recently we have elucidated the true nature of Lipshutz ($X = \text{CN};$ left) and Gilman bis(amido)cuprates. [1,4] Studies are now extending to the use of various amido ligands in order to reduce system costs and we report here advances in DoC using 2,2,6,6-tetramethylpiperidine (TMPH) and cis-2,6-dimethylpiperidine (DMPH) as amido ligand sources.

Interpreting adducts e.g. 6 as resulting from LiX ($X = \text{Br}$) elimination from the corresponding Lipshutz-type dimer we monitored the synthesis of 8 using a ‘Lipshutz-type’ 4:2:1 ratio (i.e. 2 eq. Cu per arené). Meanwhile the use of 6 gave an essentially identical yield, suggesting adducts are an efficient source of Gilman monomers.

The ability of an adduct to effect DoC has been modelled. Conversion of reactants RT_{eq} to complex IM_1L_2 between ($\text{Me}_2\text{N}_2\text{Cu}$(OMe)) and N,N-dimethylbenzamide is accompanied by a change in ΔG of only +6.1 kcal/mol. This reinforces our conclusion that adducts such as 6 represent viable new DoC reagents. [6]