Using a commercial low cost sensor network (AQMesh) to quantify urban air quality: comparing measured and modelled (ADMS-urban) pollutant concentrations

D. Carruthers¹, D. Clarke², K. J. Dicks³, R. A. Freshwater⁴, M. Jackson¹, <u>R. L. Jones⁴</u>, C. Lad¹, I. Leslie⁵, A. J. Lewis³, H. Lloyd⁴, O. A. M. Popoola⁴, A. Randle⁶, S. Ulrich⁴

¹Cambridge Environmental Research Consultants, UK
 ²Cambridgeshire County Council, Cambridge, UK
 ³Cambridge City Council, Cambridge, UK
 ⁴Department of Chemistry, University of Cambridge, UK
 ⁵Computer Laboratory, University of Cambridge, UK
 ⁶Environmental Instruments Ltd., Stratford-upon-Avon, UK

Talk outline

- AQMesh
- Premise of inter-comparison
- Pre-deployment inter-comparison
- Comparison with reference instruments
- Comparison with ADMS model
- Snapshot (v. superficial)

Premise of inter-comparison:

- Test of 'out of box' AQMesh performance
- No local calibration/re-scaling
- No pan-network analysis (individual sensors)
- NO, NO₂, PM_{2.5}, PM₁₀ only (reference instruments)

Sensor Calibration

Gas sensors

Comparison between Alphasense electrochemical sensors and local (to AQMesh) reference instrumentation to determine sensor specific calibration parameters.

Particle sensor

OPCs co-located with a "gold standard pod" at the AQMesh outdoor test facility to provide consistent calibration parameters.

CO, NO, NO₂, O₃, SO₂, PM₁, PM_{2.5} and PM₁₀

Cross network NO₂ performance (pre-deployment)

LINIVERSITY OF

Air Quality Monitoring: Evolving Issues and

New Technologies, December 13th 2016

5

Cross network PM_{2.5} performance (pre-deployment)

Intercept= 0.13 ± 0.3 ug/m3

Pre-deployment co-location comparison statistics

	Gradient	Intercept	R ²	Average (min-max)
NO ₂	0.94±0.07	0.34±0.47	0.8±0.11	6.2 (0-22.3)
NO	- C	omparable pe	erformance	_
со	0.91±0.12	54.7±76.7	0.89±0.13	606 (390-8300*)
O ₃	0.88±0.16	4.16±6.2	0.74±0.18	32.9 (0.13 – 227**)
SO ₂	0.88±0.37	0.13±0.37	0.93±0.08	0.48 (0 - 60*)
PM ₁	0.98±0.46	0.03±0.046	0.97±0.03	1.64 (0 - 8.4)
PM _{2.5}	0.98±0.07	0.13±0.03	0.98±0.02	7.02 (0 – 52)
PM ₁₀	0.96±0.03	0.50±082	0.95±0.03	12.6 (0 - 104)

** single event
* single measurement

Excellent sensor-sensor performance (only part of the issue)

Cambridge deployment (20 nodes)

Northwest Cambridge (building development)

> Reference site (Gonville Place)

Central Cambridge (high traffic density)

> South Cambridge (biomedical campus development)

NO₂ Gonville Place comparison (pre-ratified)

NO₂ Gonville Place comparison (pre-ratified)

NO₂ Gonville Place comparison (ratified)

NO Gonville Place comparison (pre-ratified)

- **Diurnal pattern**
- AQMesh high
- Not consistent

NO Gonville Place comparison (ratified)

PM_{2.5} Gonville Place comparison (ratified)

PM_{2.5} Gonville Place comparison (ratified)

- PM events captured, magnitudes overestimated
- OPC measures at ambient RH deliquescence effects at high RH?
- Algorithm correction?

PM₁₀ Gonville Place comparison (ratified)

PM₁₀ Gonville Place comparison (ratified)

- PM events captured, magnitudes <u>significantly</u> overestimated in AQMesh
- OPC measures at ambient RH deliquescence effects at high RH?
- Algorithm correction?

Gonville Place AQMesh reference comparison statistics

Pre-AURN ratification

	Gradient	Intercept	R ²
NO ₂ pre	1.07 (0.01)	10.0 (0.1)	0.50
NO pre	1.07 (0.01)	4.4 (0.21)	0.49
PM _{2.5} pre	0.92 (0.01)	-3.0 (0.15)	0.41
PM ₁₀ pre	1.17 (0.02)	-8.7 (0.51)	0.21

Post-AURN ratification

	Gradient	Intercept	R ²
NO ₂ post	0.82 (0.01)	5.1 (0.13)	0.74
NO post	1.09 (0.01)	0.63 (0.27)	0.65
PM _{2.5} post	0.92 (0.01)	-3.0 (0.15)	0.42
PM ₁₀ post	1.17 (0.02)	-8.7 (0.51)	0.21

Air Quality Monitoring: Evolving Issues and New Technologies, December 13th 2016

Improvement is from AURN ratification

NO₂ Gonville Place ADMS-AQMesh comparisons

NO Gonville Place ADMS-AQMesh comparisons

PM_{2.5} Gonville Place ADMS-AQMesh comparisons

PM₁₀ Gonville Place ADMS-AQMesh comparisons

NO₂ ADMS-AQMesh comparisons – all stations **Different traffic** queueing assumptions 70 observed 2016-10-19 60 2016-12-06 50 NO2 (ppb) 40 30 20 10 0 s-1135 s-1136 suction construction constructi s-1145 s-1146 s-1148 s-1149 s-1134 s-1138 s-1139 s-1143 s-1144 s-1150 s-1152 s-1153 s-1137 s-1147 s-1151 gonville place montague road newmarket road parker street regent street

 Traffic queueing (density/stopstart) and road representation critical for ADMS

UNIVERSITY OF

NO_x ADMS-AQMesh comparisons – all stations – 3 month average

- Model ~ captures AQMesh spatial gradients
- Local (spatially heterogeneous) sources

PM ADMS-AQMesh comparisons – all stations – 3 month average

- Model ~ captures (lack of) spatial gradients
- Averages dominated by non-local sources

Snapshot of some results

Snapshot of some results (NO₂, PM_{2.5})

Next steps

- Cross network calibration/QC
- Measurement scaling, PM
 deliquescence effects
- Inclusion of CO₂ measurements
- Source apportionment studies
- Separation of scales
- Methodologies for assimilation into ADMS

Conclusions/inferences

- AQMesh sensor performance 'out of box' no scaling, no use of local measurements.
 - Sensor- sensor reproducibility very good (important first step, but....)
 - AQMesh NO/NO₂/NOx inter-comparison with ratified measurements extremely encouraging.
 - AQMesh PM measurements capture events, but poor scaling (esp. PM₁₀).
 - Hotspot detection (NO₂ short term exceedences).
- Ratification process produces some rather surprising results.....
- ADMS model captures general AQMesh picture reasonably well, but fails to capture local spatial/temporal detail.
 - Consequence of traffic flow assumptions?
- Yet to apply pan-network analysis/local calibration techniques
 - Clear improvements in prospect.
- Not without issues, but demonstrated potential to provide real-time highdensity measurements needed e.g. for 'smart cities', pollution hotspot detection etc.
 - Complement/extend AURN network or 'gold standard' instrument
 - Assimilation of high spatial resolution measurements into models (e.g. ADMS)

D. Carruthers¹, D. Clarke², K. J. Dicks³, R. A. Freshwater⁴, M. Jackson¹, <u>R. L. Jones⁴</u>, C. Lad¹, I. Leslie⁵, A. J. Lewis³, H. Lloyd⁴, O. A. M. Popoola⁴, A. Randle⁶, J. Stocker¹, T. Townend⁶, S. Ulrich⁴

¹Cambridge Environmental Research Consultants, UK
²Cambridgeshire County Council, Cambridge, UK
³Cambridge City Council, Cambridge, UK
⁴Department of Chemistry, University of Cambridge, UK
⁵Computer Laboratory, University of Cambridge, UK
⁶Environmental Instruments Ltd., Stratford-upon-Avon, UK

